Read Avoid Boring People: Lessons From a Life in Science Online

Authors: James D. Watson

Tags: #General, #Biography & Autobiography, #Personal Memoirs, #Self-Help, #Life Sciences, #Science, #Scientists, #Molecular biologists, #Biology, #Molecular Biology, #Science & Technology

Avoid Boring People: Lessons From a Life in Science (16 page)

BOOK: Avoid Boring People: Lessons From a Life in Science
12.26Mb size Format: txt, pdf, ePub
ads
2. Work on problems only when you feel tangible
success may come in several years

Many big goals are truly ahead of their time. I, for one, would like to know now where exactly my home telephone number is stored in my brain. But none of my colleagues who think about the brain yet know even how to approach this problem. We might do very well by asking how the cells in the much, much smaller fly brain are wired so as to recognize the odor of a specific alcohol—that would be getting us somewhere.

I feel comfortable taking on a problem only when I believe meaningful results can come over a three-to-five-year interval. Risking your career on problems when you have only a tiny chance to see a finish line is not advisable. But if you have reason to believe you have a 30 percent chance of solving over the next two or three years a problem that most others feel is not for this decade, that's a shot worth taking.

3. Never be the brightest person in a room

Getting out of intellectual ruts more often than not requires unexpected intellectual jousts. Nothing can replace the company of others who have the background to catch errors in your reasoning or provide facts that may either prove or disprove your argument of the moment. And the sharper those around you, the sharper you will become. It's contrary to human nature, and especially to human male nature, but being the top dog in the pack can work against greater accomplishments. Much better to be the least accomplished chemist in a super chemistry department than the superstar in a less lustrous department. By the early 1950s, Linus Pauling's scientific interactions with fellow scientists were effectively monologues instead of dialogues. He then wanted adoration, not criticism.

4. Stay in close contact with your
intellectual competitors

In pursuing an important objective, you must expect serious competition. Those who want problems to themselves are destined for the backwaters of science. Though knowing you are in a race is nerve-racking, the presence of worthy competitors is an assurance that the prize ahead is worth winning. You should feel more than apprehensive, however, if the field is too large. This usually means you are in a race for something too obvious, not enough ahead of its time to deter the more conservative and less imaginative majority. The presence of more than three or four competitors should tell you that your chance of winning is not only low but virtually incalculable since you are unlikely to have a detailed knowledge of the strengths and weaknesses of most of your competition. The smaller the field, the better you can size it up, and the better the chance you will run an intelligent race.

Avoiding your competition because you are afraid that you will reveal too much is a dangerous course. Each of you may profit from the other's help, and an effective dead heat that allows you to publish simultaneously is obviously preferable to losing. And if it happens that someone else does win outright, better it be someone with whom you are on good terms than some unknown competitor whom you will find it hard not to at least initially detest.

5. Work with a teammate who is your intellectual equal

Two scientists acting together usually accomplish more than two loners each going their own way. The best scientific pairings are marriages of convenience in that they bring together the complementary talents of those involved. Given, for example, Francis's penchant for high-level crystallographic theory, there was no need for me also to master it. All I needed were its implications for interpreting DNA X-ray photographs. The possibility, of course, existed that Francis might err in some fashion I couldn't spot, but keeping good relations with others in the field outside our partnership meant that he would always have his ideas checked by others with even greater crystallographic talents. For my part, I brought to our two-man team a deep understanding of biology and a compulsive enthusiasm for solving what proved to be a fundamental problem of life.

An intelligent teammate can shorten your flirtation with a bad idea. For all too long I kept trying to build DNA models with the sugar phosphate backbone in the center, convinced that if I put the backbone on the outside, there would be no stereochemical restriction on how it could fold up into a regular helix. Francis's scorn for this assertion made me reverse course much sooner than I would have otherwise. Soon I too realized that my past argument had been lousy and, in fact, the stereochemistry of the sugar-phosphate groups would of course move them to outer positions of helices that use approximately ten nucleotides to make a complete turn.

In general, a scientific team of more than two is a crowded affair. Once you have three people working on a common objective, either one member effectively becomes the leader or the third eventually feels a less-than-equal partner and resents not being around when key decisions are made. Three-person operations also make it hard to assign credit. People naturally believe in the equal partnerships of successful duos—Rodgers and Hammerstein, Lewis and Clark. Most don't believe in the equal contributions of three-person crews.

6. Always have someone to save you

In trying to be ahead of your time, you are bound to annoy some people inclined to see you as too big for your britches. They will take delight if you stumble, believing your reversals of fortune are deserved. They may reveal themselves only in the moment of your discomfiture: often you find them controlling your immediate life by, say, determining whether you will get your fellowship or grant renewed. So it always pays to know someone of consequence—other than your parents—who is on your side. My hopes to go for broke with DNA by going to Cambridge would have gone nowhere if my phage-day patrons, Salvador Luria and Max Delbrück, had not come to my rescue when my request to move my fellowship from Copenhagen to Cambridge was turned down. I was then judged, not without cause, to be unprepared for X-ray crystallography and urged to move instead to Stockholm to learn cell biology. Immediately John Kendrew offered me a rent-free room in his home, while Luria, through a personal connection, got my fellowship extended for eight months. Soon after, Delbrück arranged a National Foundation for Poliomyelitis fellowship for the succeeding year. In finding the funds that kept me in Cambridge, Luria and Delbrück were hoping that my new career as a biological structural chemist would succeed and do them proud. But they fretted about my being too far from their fold, knowing that I would likely leave empty-handed from my long Cambridge stay. The second year of my fellowship was, in fact, to be spent at Caltech, giving me at least a measure of security in the event the DNA structure was solved by others. In leaving one field for another, it never makes sense to burn your past intellectual bridges at least until your new career has taken off.

7. MANNERS PRACTICED AS AN UNTENURED PROFESSOR

T
HE HARVARD to which I moved in the fall of 1956 thought of itself as the best university in the United States. Most certainly it was the oldest, and with its endowment the largest of any university's, it saw no reason not to have the most distinguished faculty of any institution on the planet. Before any tenure appointment, a group of eminent experts in the field were assembled to advise the president as to how the proposed candidate ranked among peers worldwide. The use of such ad hoc committees dated from the administration of James Conant, a distinguished organic chemist and only the second scientist ever to lead Harvard. Taking over from Lawrence Lowell in 1933, he presided for twenty years, resigning in 1953 to serve as U.S. high commissioner and later ambassador to Germany. Deeply involved in the military-related science that helped the United States win World War II, he seized upon the improvements in the nation's scientific capability to raise the bar correspondingly at Harvard's mathematics, physics, and chemistry departments.

The Harvard biology faculty contained several world-class scientists, in particular the vision biochemist George Wald and the evolution authority Ernst Mayr. But too many of its faculty had pedestrian outlooks incommensurate with the quality of most Harvard students. All too typical was the Biology Department's uninspired introductory course. It abounded in dull facts for its largely premedicai enrollees to memorize. One year its abject dreariness provoked the studentwritten “Confidential Guide” to suggest that one of its instructors might do well to shoot himself.

Unlike Caltech, where genetics was the dominant biological discipline, Harvard's department, then chaired by the pedantic amber insect specialist Frank Carpenter, did not treat one field of biology as any more important than another. Together with his forlorn assistant, the former Rhodes scholar Orin Sandusky, Carpenter lumberingly oversaw the department's day-to-day activities in the massive five-story Biological Laboratories. It was built in the early 1930s in brick textile factory style, much of the money for its construction coming from the General Education Board of the Rockefeller Foundation, whose members wanted the benefaction to promote research as opposed to teaching. The nonexistence of a Biolabs lecture hall big enough for large biology classes was thus not a mistake but a matter of principle.

By the time the construction of the Biolabs started in 1932, the Depression had arrived and funds to outfit the north wing never materialized. Twenty-five years later, this wing's long empty factorylike floors suggested themselves to me as more than sufficient space for DNA-based biology to thrive at Harvard if the university was so inclined. Equally important to this objective, many senior faculty members were on the verge of retiring. Their large square corner offices, connecting to secretarial areas, themselves big enough for professors in less prestigious institutions, would soon be free. No lunchroom existed within the Biolabs either, and at noon the notables set off for the Georgian-style Faculty Club on Quincy Street. There they invariably lunched by themselves around the same rectangular table just inside the main dining room. Administrative minutiae, not ideas, dominated most conversations, with food chosen from a menu featuring horse steak, a proud holdover from wartime's austerity. Off the main dining room and usually entered by its own outside entrance was a separate room for women guests. Then there were effectively no women on Harvard's Faculty of Arts and Sciences.

With its corridor walls seemingly unpainted for at least a decade, the Biolabs’ only sparkle came from the two enormous bronze rhinoceros that flanked the main entranceway. They had been sculpted by a talented friend of President Lowell's, who also designed the friezes of wild animals that ran above the courtyard. The vision of biology these figures conveyed meshed well with the mission of Harvard's nearby Department of Geographical Exploration, its building still topped by the radio antenna once used to keep in touch with members out beyond the fringes of Western civilization. But that department no longer existed. Rumor had it that President Lowell had been horrified to learn that several of its members were homosexuals. So its handsome one-story brick edifice was now the center of Harvard's Far Eastern studies, where the savvy John King Fairbank and Edwin O. Reischauer held sway.

Even closer to the Biolabs along Divinity Avenue was the Semitic Museum, donated by the banker Jacob Schiff at the end of World War I to encourage the study of ancient Jewish culture. But now most of its facilities were occupied by the Bob Bowie- and Henry Kissinger-led Harvard Center for International Affairs (HCIA), whose acronym encoded the identity of its secret government funder, which had an interest in training Harvard's students as the possible future leaders of the free world.

On the far side of the elm-lined grassy courtyard in front of the Biolabs stood what once had been the principal dormitory of the Harvard Divinity School. Ralph Waldo Emerson was said to have lived there early in the nineteenth century. But such historical facts mattered little to James Conant, under whose presidency the Divinity School's long minor role in Protestant theological training had withered almost to extinction. Just before my arrival, religion at Harvard was given a new lease on life through the appointment of Nathan Marsh Pusey as its next president. Born in Iowa in 1907, Pusey had studied classics as a Harvard undergraduate and had obtained his Ph.D. there at the age of thirty. After teaching at Lawrence, Scripps, and Wesleyan colleges, he returned to Wisconsin as president of Lawrence College in 1944. There he was to achieve postwar renown by speaking out against his state's junior senator, Joseph McCarthy. In choosing him as James Conant's successor, the five members of the Harvard Corporation saw themselves reaffirming the importance of a strong moral overtone in higher education. They were not unduly concerned that Pusey did not have the intellectual distinction to be a member of its faculty. Later they were to silently realize that his writings never sparkled and that his addresses to both students and faculty were occasions of neither enlightenment nor inspiration. And when they inevitably built a library in his memory, it was a below-ground structure intended to store archives.

To Pusey's credit, he accepted the Corporation's advice to appoint a first-class dean of the Faculty of Arts and Sciences. Whether he knew that in McGeorge Bundy he was choosing someone who would outclass him on virtually any occasion they were together, we will never know. A Boston blueblood by birth, Bundy came to Harvard via Groton and a brilliant undergraduate career at Yale. At Harvard he was initially one of the elite junior members of the Society of Fellows, later joining the Government Department and securing tenure by the time he became Harvard's most important dean. All appointments to the Faculty of Arts and Sciences would be administered by him, and it was he who would choose the ad hoc committees whose deliberations he and President Pusey invariably attended.

It is highly unlikely that Bundy had any role in Pusey's ill-fated decision, made in his second year as president, to deny the request of a Jewish student to be married in Harvard's imposing Memorial Church, built in the 1920s in memory of the American fallen of the First World War. In so doing, Pusey aroused the wrath of his faculty. A prominent delegation came to his office to tell him that Harvard's church should be open to those of all faiths, not restricted to Christians. It was a grievance rooted in history. Many years before, Jews had been effectively blackballed from faculty positions. Those faculty who had come to the president's office were determined that such bigotry as had stained Harvard's past would not corrupt its present. Sensing a fight that would effectively destroy the moral authority for which he was appointed, Pusey reversed his edict and the incident soon faded from view.

For Harvard's president, however, it was deeply wounding to be told that his initial response, which he regarded a reaffirmation of his institution's long Protestant heritage, was an expression of anti-Semitism.

From that moment on, Pusey never again saw his faculty as allies and became socially isolated from them during his remaining eighteen years as president. For friendship, he and his wife, Anne, would turn to the governing boards. They became summer residents of Seal Harbor on Mt. Desert Island, Maine, close to the home of David Rockefeller, soon to become chairman of Harvard's Board of Overseers. Both leaders felt similarly about the importance of religion, with Rockefeller making a major gift to strengthen the faculty of the Divinity School.

My decision to leave Caltech for Harvard was facilitated by a growing friendship with the chemist Paul Doty, whose laboratory in Gibbs Lab was just across Divinity Avenue from the Biolabs. Paul, trained initially as a physical chemist and then a polymer chemist, began physical-chemical studies of DNA only after moving to Harvard in 1948. Eight years older than I, he had just become a full professor when I arrived at Harvard. Fortunately for me, he was one of a handful of key faculty to whom McGeorge Bundy regularly turned for advice. So while many Harvard biologists remained uncertain as to whether I belonged in their department or in chemistry, Bundy, through Paul, knew I was a true biologist and hoped I'd help make the biology department into one comparable in stature to the ones in chemistry and physics.

Reassuring me that my academic life would not be totally at the whim of old-fashioned biologists was the recent formation of the Committee for Higher Degrees in Biochemistry, whose members were to be drawn from suitable individuals in the Biology and Chemistry departments. As a member from Biology, I would help choose the first class of graduate students and advise on appropriate courses for their first year. My first research student, Bob Risebrough, had been admitted as a Biology Department graduate student. As an undergraduate at Cornell, his main focus had been ornithology. Now he was excited by DNA, and his best introduction to it, I decided, might be to do a thesis on the properties of phage 9×174, then reported to be much smaller than any other known phage. Its DNA molecules might be correspondingly smaller, thus perfectly suited to Paul Doty's physical chemistry instrumentation. Later I put my first biochemistry graduate student, Julian Fleischman, to work on the task of establishing the sizes of the DNA molecules in the much bigger T2 phage. Conceivably each T2 particle contained several DNA molecules held together end to end by protein linkers. Studying them might provide a good model for how DNA is arranged in the chromosomes of higher cells.

When Paul Doty ominously told me that promotions to tenure were often decided based on teaching evaluations, I realized I couldn't give the old-fashioned biologists a reason to suggest I might be better suited to a pure research institution or medical school. My attention focused sharply in my first months on my teaching assignments. Invariably worried that I would not have enough material memorized to occupy the next instructional hour, I meticulously outlined all my coming lectures. By doing so, I could offer my virus course students, largely advanced undergraduates, copies of the outlines, thereby relieving them of the need to take notes. Few students, however, availed themselves of this opportunity, continuing to be so sophomor-ically absorbed in note taking that their faces never revealed whether they were following my arguments. Fortunately, not too many stumbled in the hourlong midterm exam. And remembering the long-term benefits that had accrued to me at Indiana University from writing term papers on personally intriguing research topics, I asked them to write ten to fifteen pages on something in the course that particularly caught their fancy.

Initially I hoped to effect my social integration into the Harvard scene by living in one of the large undergraduate residence halls. Called houses, their creation realized President Lowell's wish to establish between Harvard Yard and the Charles River replicas of the Cambridge and Oxford colleges. As such, they would have young unmarried “tutors” living in specially designed suites. I asked my departmental chairman, Frank Carpenter, about the possibility, and he advised I try Leverett House, where the master was the embryolo-gist Leigh Hoadley. Though he had long given up even a pretense of being a scientist, I saw no reason to assume Leigh would prove equally useless as a house master. All too soon, however, I discovered that the “bunny hutch,” as Leverett House was then known, was never a first choice for undergraduates and that its so-called high table was the antithesis of what I had known in Cambridge. We ate the same uninspired food as the undergraduates, and conversation followed the lead of Master Hoadley, incapable of either levity or deep thought.

The ersatz high table might have mattered less if I had been provided with adequate living quarters. But my so-called suite did not look out on the Charles, its only view being to the opaque bathroom window of the master's apartment. My psyche was not helped by Hoadley's later admission that he might have given me accommodations more appropriate for a dog. I saw no reason to immediately let him know when I moved to a one-room flat carved out of a large house on nearby Francis Avenue. My first lab assistant, Celia Gilbert, daughter of the radical journalist I. F. Stone, had told me that her father's friend Helen Land had a vacancy nearby. It was one of several such small flats that I later realized were rented mainly to individuals with leftist connections. As I moved in, the journalist-to-be Jonathan Mirsky was moving out of the same building. His apartment was later occupied by a government graduate student, Jim Thomson, whom I would later meet when he became a member of the National Security Council.

In coming to Harvard still unmarried, I was more than conscious of goings-on at the once quite separate women's college, Radcliffe. Its residence halls were less than a mile away, and after the war classes at both colleges became entirely coeducational. Only the undergraduate Lamont Library remained out of bounds for women. How to go about meeting Radcliffe girls was not obvious, as their occasional mixers, then called jolly-ups, never seemed to bring forth the ones you would want to be seen with. Luckily, the geneticist Jack Schultz had a daughter, Jill, whom I had known earlier in Cold Spring Harbor, and who was now a Radcliffe senior living in a small wooden house off campus on Massachusetts Avenue. Soon I was to meet several of her housemates and gradually acquired the confidence to show up unannounced for after-dinner coffee.

BOOK: Avoid Boring People: Lessons From a Life in Science
12.26Mb size Format: txt, pdf, ePub
ads

Other books

Higher Ground by Nan Lowe
Hidden Fire by Alexis Fleming
One Hot Winter's Night by Woods, Serenity
Dark Waters by Liia Ann White
The Rancher's One-Week Wife by Kathie DeNosky
Blood Child by Rose, Lucinda
Harvestman Lodge by Cameron Judd