Four Fish (11 page)

Read Four Fish Online

Authors: Paul Greenberg

BOOK: Four Fish
13.29Mb size Format: txt, pdf, ePub
“If we go back to just after the last ice age,” Gray wrote me, “all our salmon rivers
had
to recolonize. The genetic integrity had to start all over again.” Salmon rivers were wiped out by glaciers throughout their range between ten thousand to twenty thousand years ago. Somehow, from a small genetic redoubt, they were able to reclaim their kingdom. There is a metagenetic component that must be respected, Gray agrees. West-coast Scottish salmon “turn right” to go north to Greenland, whereas east-coast “turn left.” Putting a west-coaster in an east-coast river could send fish on a deadly holiday to France.
But if you have these metacomponents correct, you can start to goose salmon back to viability. Gray believes that we must get away from the mammoth hatcheries and industrial hatching facilities the salmon-farming industry helped concoct. Genetics are important, he agrees, but he has found that properly preparing juveniles for reintroduction and timing the stocking of rivers is even more so; it means the difference between success and failure. Hatchery-born salmon, it turns out, have to be taught what it’s like to be wild again in order to make it. Gray introduces strong riverlike currents in their larval tanks. He feeds them insects and other food they will encounter in the wild when reintroduced to the river. And he releases them at a time when he knows other predators in the river will be largely absent or not feeding. All this has meant a complete reversal in the fate of the Tyne. Within thirty years of starting his efforts, he has brought the Tyne to the point where more than twenty thousand adult salmon return to spawn every year.
Salmon are inherently fragile, but also perhaps inherently resilient. Most salmon rivers were ruined at a time when we did not know how to mitigate our impact. But now we do. And if we can clean up rivers and make salmon-friendly conditions more possible in their former range, perhaps we will see wild salmon again in our lifetimes. In New York’s Salmon River where I stood, I saw the evidence of this possibility with my own eyes. The Donaldson salmon that were stocked in the 1980s were originally put into Lake Ontario and the Salmon River for neither food nor sport, but rather to try to deal with the stinking mass of alewives that washed up on local beaches every summer.
The Donaldson fish did just that. But they grew big and powerful and beautiful, and fishermen wanted to catch them and eat them. The only problem was that Lake Ontario had suffered from nearly a century of industrial pollution, pollutants that ranged from persistant heavy metals like chromium to the manufacturing elements of the Vietnam-era defoliant Agent Orange. The fish were dangerously toxic. Fish and Game was ordered to stop stocking Donaldson kings into the Salmon River because of the health risk they posed to fishermen should they eat their catch. But even after Fish and Game stopped stocking them, something unusual happened. The Donaldson kings started spawning naturally. They had gone native.
The purist in me, the fisherman, the seeker of truly wild fish, wanted to recoil. What were these salmon at my feet? What would they become? What were Pacific salmon doing in a habitat that should be ruled by Atlantic-strain fish? What good were they to anybody if you couldn’t eat them? All this went through my head until suddenly one of them, a magnificent golden brown animal four feet long and nearly a foot across the shoulders, reared up out of the water and grabbed my lure, pulling me off my rock with the force of its run. It was the pull of something wild. Something that dragged me upstream from my depressing thoughts of vanishing fish, suggesting that all was not over with salmon in my life. A mental adjustment would have to be made, but it seemed wrong to deny the presence of this salmon, an undeniably powerful and beautiful fish, in a river that twenty years earlier had been entirely devoid of them.
“To hell with it,” I said to myself as line screamed off my reel and my heart beat and I chased the big fish up the river. The Salmon River, after all, should have salmon in it.
Sea Bass
The Holiday Fish Goes to Work
W
hen you ask most seafood eaters which fish are farmed, most will say “salmon.” Beyond that, consumer knowledge gets fuzzy. People seem to have a vague awareness that fish farming is growing, but why, where, by how much, and through what means remain under the radar. Consumers’ default assumption still seems to be that a fish on the plate is most likely going to be wild. This in spite of the fact that aquaculture is the fastest-growing food-production system in the word and will likely surpass wild production within a year or two (if it hasn’t done so already).
Take my stepmother, for example. About five years ago she told me she had found a new favorite fish. She’d eaten it on a recent trip to Italy, and she was happy to discover on her return that the fish had just become available in many upscale Italian restaurants throughout New York City. Lunching with her one day, I finally got a look at this new animal. It was called “branzino” on the menu, and, in the style of European seaside restaurants, it was to be served grilled and whole. Before it hit the flames, the waiter brought the fish out so that we could assess its freshness and quality and perhaps also to give us the impression of a holiday meal at the shore. My stepmother did not enjoy this part—her diet is, with the exception of fish, vegetarian, and she does not like to be confronted with evidence that fish are animals, with eyes as intelligent-looking as any mammal’s.
The branzino was very fresh—its gaze was clear and its scales clamped down tightly against its flanks. It was exactly the size of a dinner plate, silver in color, with an attractive streamlined profile that reminded me of the American striped bass—perhaps the most famous game fish in America and a fish that has grown scarce on American menus since commercial fishing for it was temporarily banned in the mid-1980s and then severely restricted thereafter. A look through one of my fish atlases at home later that day revealed that the branzino was indeed very close to a striped bass—some taxonomists had even moved it over into the same genus as the striper—
Morone.
The British call branzino “bass” or “sea bass” or “European sea bass,” and they pursue them in their wild form as ardently as I had hunted striped bass in my youth. And once I’d made the acquaintance of European sea bass / sea bass / branzino, I found that I came across it everywhere. In the dozens of faux-French bistros that had sprouted up in America’s urban centers, it was called “bar” or “loup de mer.” In Italian trattorias that claimed a southern or Sicilian provenance, it went by the name “spigola,” while the Spanish served it up with yellow rice as “robalo.” And always when it appeared, it was brought out whole and fresh, eyes clear and intelligent, exactly the size of a dinner plate. A European seaside holiday in the time span of a single meal.
Where had this fish come from? “Europe!” I was told by a variety of waiters. Where in Europe? No one quite seemed to know. “Maybe the Mediterranean?” Why were we eating this European bass instead of a local fish? “Because it’s European!” seemed to be the most common answer.
During the next few years, I was to become more intimate with the European sea bass. I was to find that the taming of the European sea bass was one of the most important developments in the relationship between humans and fish. For the forces that brought the plate-size European sea bass to restaurants around the globe represented the next phase in both managing and domesticating the oceans. Unlike salmon, which adapt relatively easily to a farmed environment, sea bass and the wide range of ocean fish that we eat are difficult to master. Their early lives are microscopic, their breeding habits complex, and they seem inherently resistant to our designs of putting them into our underwater mangers. That sea bass were pulled out of the vast background of wild fish and eventually tamed turns out to be the end result of a two-thousand-year-old process of exploitation and scientific investigation, one that involved the efforts of ancient Roman fishermen, modern Italian poachers, French and Dutch nutritionists, a Greek marine biologist-turned-entrepreneur, and an Israeli endocrinologist. All of them advertently and inadvertently created the conditions for an endgame that resulted in the globalization of the European sea bass.
I was also to learn that by charting the history of European sea bass and the word “bass” in general, I could get a sense of what had happened to the world’s coastal fisheries in the last quarter century and how human beings have gone about laying the groundwork for the next great artificial selection.
 
 
 
W
hat do fishmongers and restaurateurs mean when they encourage us to choose something called bass? And why do so many fish seem to be lumped under that single name? The answer brings us back to the persistence of the primitive relationship between fish and fishermen and to the superstitious, highly unscientific way humans distinguish “good” edible fish from bad ones.
The English word “bass” derives from the Germanic
barse or barsch,
meaning “bristle” and most likely refers to the five-odd spiny rays that jut out from the dorsal side of species bearing that name. But as Anatoly Liberman, author of the book
Word Origins and How We Know Them
and one of the world’s leading experts on names and their derivations, told me, fish names are slippery and not necessarily married to any one characteristic. “Several different fishes may have identical names, whereas similar-looking fishes may have widely different names.” The name “moonfish,” for example, applies to fish in at least seven different genera around the world. Many moonfish are roundish and vaguely moonlike, but many are not. As Liberman explained, this may stem from the fact that the very nature of hunting wild things compelled humans to be tricky and evasive with the names they chose. “Hunters and fishermen are superstitious people,” Liberman continued, “and often prefer to call their potential prey in some indirect way, so that it won’t hear and recognize the word.”
Nevertheless, as humans emerged from prehistory into an age of reason and classification, a somewhat primitive reliance on outward physical appearance rather than evolutionary provenance has up until the twentieth century guided taxonomists. In the modern era, everything commonly called bass, be it a European sea bass, an American striped bass, or a Chilean sea bass, is classified as belonging to a single scientific order, the order Perciformes
,
whose root,
perc,
drives the researcher back to the Greek
perkē.
When that is combined with the Latin
formes,
we end up with a classification that means, broadly, “perch-shaped.” Many fish turn out to be “perchshaped”—Perciformes is the largest order of vertebrates on earth, containing over seven thousand species and most of the so-called game fish of the world. It is so large a classification that taxonomists often call it a “garbage-bag holder,” used to contain a ridiculously large number of vaguely similar species that people haven’t quite gotten around to properly classifying. Curiously, and perhaps not altogether coincidentally, the order Perciformes includes most of the fish in the sea that people of European descent consider edible. “If it’s perchlike,” the classification seems to be saying, “let’s eat it.”
Why we originally chose to eat so heartily from the order Perciformes is connected to evolutionary advancements that date back 250 million years. Whereas more primitive fish must constantly swim to keep from sinking to the bottom, the forebears of the perciforms perfected an organ called the swim bladder, which they inflate with gas to keep them neutrally buoyant in the water column, much as a scuba diver inflates a buoyancy compensator to achieve a state of weightlessness. When a perciform dives deeper, it emits more gas into its bladder, which compensates for the added pressure of the water above. When it rises, it absorbs gas back into its tissues, once again finding a weightless equilibrium. And, like a scuba diver who has properly adjusted his buoyancy compensator, a fish that has achieved neutral buoyancy expends less energy.
The perciforms’ victory over gravity has in turn led to other morphological adaptations that make them both successful animals and good to eat. Without a need to fight gravity all the time, perciforms became more efficient swimmers and were able to trade in their heavy, energy-demanding “red muscle” tissue for lighter, more delicate flesh. Hence the white, light meat of many perciforms. Perciforms also evolved an efficient muscle structure that is principally attached only to the central spinal column. The result: a smooth, mostly boneless fillet, very pleasant to eat
.
The last way the perciforms’ swim bladder makes them attractive to us as food is not the possibilities it gives them but rather the
limitations
it imposes. Going back to the scuba-diving analogy, there is only so deep a diver can go before his buoyancy compensator becomes useless. Below this depth, water pressure will overwhelm the gas inside the compensator and the device will implode, making the diver sink like a stone. Fish equipped with swim bladders have the same problem and are therefore limited to a certain depth range. Is it a coincidence that the maximum depth to which coastal perciforms can venture is similar to the depth to which a human free diver can swim or an early human’s primitive fishing line can reach? It could be that the fish we have come to recognize most widely as being edible are the ones that primitive Europeans could most easily catch.

Other books

Secrets At Maple Syrup Farm by Rebecca Raisin
Megan's Alien by Pixie Moon
Owned By Fate by Tessa Bailey
Cherry by Lindsey Rosin