Authors: James Gleick
He was widely considered a great educator. In fact few physicists of even the middle ranks left behind so small a cadre of students, or so assiduously shirked ordinary teaching duties. Although science remained one of the few domains of true apprenticeship, with students learning their craft at the master’s side, few learned this way from Feynman. He did not have the patience to guide a student through a research problem, and he raised high barriers against students who sought him as a thesis adviser. Nevertheless when Feynman did teach he left a deep imprint on the subject. Although he never actually wrote a book, books bearing his name began to appear in the sixties—
Theory of Fundamental Processes
and
Quantum Electrodynamics
, lightly edited versions of lectures transcribed by students and colleagues. They became influential. For years he offered a mysterious noncredit course called Physics X, for undergraduates only, in a small basement room. Some physicists years later remembered this unpredictable free-form seminar as the most intense intellectual experience of their education. Above all in 1961 he took on the task of reorganizing and teaching the introductory physics course at Caltech. For two years the freshmen and sophomores, along with a team of graduate-student teaching assistants, struggled to follow a tour de force, the universe according to Feynman. The result was published and became famous as “the red books”—
The Feynman Lectures on Physics
. They reconceived the subject from the bottom up. Colleges that adopted the red books dropped them a few years later: the texts proved too difficult for their intended readers. Instead, professors and working physicists found Feynman’s three volumes reshaping their own conception of their subject. They were more than just authoritative. A physicist, citing one of many celebrated passages, would dryly pay homage to “Book II, Chapter 41, Verse 6.”
Authoritative, too, were Feynman’s views of quantum mechanics, of the scientific method, of the relations between science and religion, of the role of beauty and uncertainty in the creation of knowledge. His comments on such subjects were mostly expressed offhand in technical contexts, but also in two slim models of science writing, again distilled from lectures:
The Character of Physical Law
and
QED: The Strange Theory of Light and Matter
. Feynman was widely quoted by scientists and science writers (although he seldom submitted to interviews). He despised philosophy as soft and unverifiable. Philosophers “are always on the outside making stupid remarks,” he said, and the word he pronounced
philozawfigal
was a mocking epithet, but his influence was philosophical anyway, particularly for younger physicists. They remembered, for example, his Gertrude Stein–like utterance on the continuing nervousness about quantum mechanics—or, more precisely, the “world view that quantum mechanics represents”:
It has not yet become obvious to me that there’s no real problem. I cannot define the real problem, therefore I suspect there’s no real problem, but I’m not sure there’s no real problem.
or, similarly, what may have been the literature’s most quoted mixed metaphor:
Do not keep saying to yourself, if you can possibly avoid it, “But how can it be like that?” because you will get “down the drain,” into a blind alley from which nobody has yet escaped. Nobody knows how it can be like that.
In private, with pencil on scratch paper, he labored over aphorisms that he later delivered in spontaneous-seeming lectures:
Nature uses only the longest threads to weave her patterns, so each small piece of her fabric reveals the organization of the entire tapestry.
Why is the world the way it is? Why is science the way it is? How do we discover new rules for the flowering complexity around us? Are we reaching toward nature’s simple heart, or are we merely peeling away layers of an infinitely deep onion? Although he sometimes retreated to a stance of pure practicality, Feynman gave answers to these questions, philosophical and unscientific though he knew they were. Few noticed, but his answer to the starkest of science’s metaphysical questions—Is there a meaning, a simplicity, a comprehensibility at the core of things?—underwent a profound change in his lifetime.
Feynman’s reinvention of quantum mechanics did not so much explain how the world was, or why it was that way, as tell how to confront the world. It was not knowledge of or knowledge about. It was knowledge how to. How to compute the emission of light from an excited atom. How to judge experimental data, how to make predictions, how to construct new tool kits for the new families of particles that were about to proliferate through physics with embarrassing fecundity.
There were other kinds of scientific knowledge, but pragmatic knowledge was Feynman’s specialty. For him knowledge did not describe; it acted and accomplished. Unlike many of his colleagues, educated scientists in a cultivated European tradition, Feynman did not look at paintings, did not listen to music, did not read books, even scientific books. He refused to let other scientists explain anything to him in detail, often to their immense frustration. He learned anyway. He pursued knowledge without prejudice. During a sabbatical he learned enough biology to make a small but genuine contribution to geneticists’ understanding of mutations in DNA. He once offered (and then awarded) a one-thousand-dollar prize for the first working electric motor less than one sixty-fourth of an inch long, and his musing on the possibilities of tiny machinery made him, a generation later, the intellectual father of a legion of self-described nanotechnologists. In his youth he experimented for months on end with trying to observe his unraveling stream of consciousness at the point of falling asleep. In his middle age he experimented with inducing out-of-body hallucinations in a sensory-deprivation tank, with and without marijuana. His lifetime saw a stratification of the branch of knowledge called physics. Those specializing in the understanding of elementary particles came to control much of the field’s financing and much of its public rhetoric. With the claim that particle physics was the most fundamental science, they scorned even subdisciplines like solid-state physics—“squalid-state” was Gell-Mann’s contemptuous phrase. Feynman embraced neither the inflating language of Grand Unified Theories nor the disdain for other sciences.
Democratically, as if he favored no skill above any other, he taught himself how to play drums, to give massages, to tell stories, to pick up women in bars, considering all these to be crafts with learnable rules. With the gleeful prodding of his Los Alamos mentor Hans Bethe (“Don’t you know how to take squares of numbers near 50?”) he taught himself the tricks of mental arithmetic, having long since mastered the more arcane arts of mental differentiation and integration. He taught himself how to make electroplated metal stick to plastic objects like radio knobs, how to keep track of time in his head, and how to make columns of ants march to his bidding. He had no difficulty learning to make an impromptu xylophone by filling water glasses; nor had he any shyness about playing them, all evening, at a dinner party for an astonished Niels Bohr. At the same time, when he was engrossed in the physicists’ ultimate how-to endeavor, the making of an atomic bomb, he digressed to learn how to defeat the iron clamp of an old-fashioned soda machine, how to pick Yale locks, and then how to open safes—a mental, not physical, skill, though his colleagues mistakenly supposed he could feel the vibrations of falling tumblers in his fingertips (as well they might, after watching him practice his twirling motion day after day on their office strongboxes). Meanwhile, dreamily wondering how to harness atomic power for rockets, he worked out a nuclear reactor thrust motor, not quite practical but still plausible enough to be seized by the government, patented, and immediately buried under an official secrecy order. With no less diligence, much later, having settled into a domestic existence complete with garden and porch, he taught himself how to train dogs to do counterintuitive tricks—for example, to pick up a nearby sock not by the direct route but by the long way round, circling through the garden, in the porch door and back out again. (He did the training in stages, breaking the problem down until after a while it was perfectly obvious to the dog that one did not go directly to the sock.) Then he taught himself how to find people bloodhound-style, sensing the track of their body warmth and scent. He taught himself how to mimic foreign languages, mostly a matter of confidence, he found, combined with a relaxed willingness to let lips and tongue make silly sounds. (Why then, his friends wondered, could he never learn to soften his Far Rockaway accent?) He made islands of practical knowledge in the oceans of personal ignorance that remained: knowing nothing about drawing, he taught himself to make perfect freehand circles on the blackboard; knowing nothing about music, he bet his girlfriend that he could teach himself to play one piece, “The Flight of the Bumblebee,” and for once failed dismally; much later he learned to draw after all, after a fashion, specializing in sweetly romanticized female nudes and letting his friends know that a concomitant learned skill thrilled him even more—how to persuade a young woman to disrobe. In his entire life he could never quite teach himself to feel a difference between right and left, but his mother finally pointed out a mole on the back of his left hand, and even as an adult he checked the mole when he wanted to be sure. He taught himself how to hold a crowd with his not-jazz, not-ethnic improvisational drumming; and how to sustain a two-handed polyrhythm of not just the usual three against two and four against three but—astonishing to classically trained musicians—seven against six and thirteen against twelve. He taught himself how to write Chinese, a skill acquired specifically to annoy his sister and limited therefore to the characters for “elder brother also speaks.” In the era when high-energy particle accelerators came to dominate theoretical physics, he taught himself how to read the most modern of hieroglyphics, the lacy starburst photographs of particle collisions in cloud chambers and bubble chambers—how to read them not for new particles but for the subtler traces of experimental bias and self-deception. He taught himself how to discourage autograph seekers and refuse lecture invitations; how to hide from colleagues with administrative requests; how to force everything from his field of vision except for his research problem of the moment; how to hold off the special terrors of aging that shadow scientists; then how to live with cancer, and how to surrender to it.
After he died several colleagues tried to write his epitaph. One was Schwinger, in a certain time not just his colleague but his preeminent rival, who chose these words: “An honest man, the outstanding intuitionist of our age, and a prime example of what may lie in store for anyone who dares to follow the beat of a different drum.” The science he helped create was like nothing that had come before. It rose as his culture’s most powerful achievement, even as it sometimes sent physicists down the narrowing branches of an increasingly obscure tunnel. When Feynman was gone, he had left behind—perhaps his chief legacy—a lesson in what it meant to know something in this most uncertain of centuries.
Eventually the art went out of radio tinkering. Children forgot the pleasures of opening the cabinets and eviscerating their parents’ old Kadettes and Clubs. Solid electronic blocks replaced the radio set’s messy innards—so where once you could learn by tugging at soldered wires and staring into the orange glow of the vacuum tubes, eventually nothing remained but featureless ready-made chips, the old circuits compressed a thousandfold or more. The transistor, a microscopic quirk in a sliver of silicon, supplanted the reliably breakable tube, and so the world lost a well-used path into science.
In the 1920s, a generation before the coming of solid-state electronics, one could look at the circuits and see how the electron stream flowed. Radios had valves, as though electricity were a fluid to be diverted by plumbing. With the click of the knob came a significant hiss and hum, just at the edge of audibility. Later it was said that physicists could be divided into two groups, those who had played with chemistry sets and those who had played with radios. Chemistry sets had their appeal, but a boy like Richard Feynman, loving diagrams and maps, could see that the radio was its own map, a diagram of itself. Its parts expressed their function, once he learned to break the code of wires, resistors, crystals, and capacitors. He assembled a crystal set, attached oversized earphones from a rummage sale, and listened under the bedcovers until he fell asleep. Sometimes his parents would tiptoe in and take the earphones off their sleeping boy. When atmospheric conditions were right, his radio could pull in signals from far away—Schenectady in upstate New York or even station WACO from Waco, Texas. The mechanism responded to the touch. To change channels he slid a contact across a wire coil. Still, the radio was not like a watch, with gears and wheels. It was already one step removed from the mechanical world. Its essential magic was invisible after all. The crystal, motionless, captured waves of electromagnetic radiation from the ether.
Yet there was no ether—no substance bearing these waves. If scientists wished to imagine radio waves propagating with the unmistakable undulating rhythm of waves in a pond, they nonetheless had to face the fact that these waves were not
in
anything. Not in the era of relativity: Einstein was showing that if an ether existed it would have to be motionless with respect to any and all observers—though they themselves moved in different directions. This was impossible. “It seems that the aether has betaken itself to the land of the shades in a final effort to elude the inquisitive search of the physicist!” the mathematician Hermann Weyl wrote in 1918, the year Feynman was born. Through what medium, then, were radio waves sweeping in their brief journey from the aerials of downtown New York to Feynman’s second-story bedroom in a small frame house on the city’s outskirts? Whatever it was, the radio wave was only one of the many sorts of oscillations disturbing every region of space. Waves of light, physically identical to radio waves but many times shorter, crisscrossing hectically; infrared waves, perceptible as heat on the skin; the ominously named X rays; the ultra-high-frequency gamma rays, with wavelengths smaller than atoms—all these were just different guises of one phenomenon, electromagnetic radiation. Already space was an electromagnetic babel, and human-built transmitters were making it busier still. Fragmented voices, accidental clicks, slide-whistle drones: strange noises passed through one another, more waves in a well-corrugated waviness. These waves coexisted not in the ether but in a rather more abstract medium, the precise nature of which was posing difficulties for physicists. They could not imagine what it was—a problem that was only mildly allayed by the fact that they had a name for it, the electromagnetic field, or just the field. The field was merely a continuous surface or volume across which some quantity varied. It had no substance, yet it shook; it vibrated. Physicists were discovering that the vibrations sometimes behaved like particles, but this just complicated the issue. If they were particles, they were nonetheless particles with an undeniably wavelike quality that enabled boys like Feynman to tune in to certain desirable wavelengths, the ones carrying “The Shadow” and “Uncle Don” and advertisements for Eno Effervescent Salts. The scientific difficulties were obscure, known only to a handful of scientists more likely to speak German than English. The essence of the mystery, however, was clear to amateurs who read about Einstein in the newspapers and pondered the simple magic of a radio set.