Read Life on a Young Planet Online
Authors: Andrew H. Knoll
Vidal, G., and M. Moczydlowska Vidal. 1997. Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton.
Paleobiology
23: 230–246. (Another view of early eukaryotic evolution; complements Knoll 1994.)
Zang, W., and M. R. Walter. 1992. Late Proterozoic and Cambrian microfossils and biostratigraphy, Amadeus Basin, central Australia.
Association of Australasian Palaeontologists Memoir
12: 1–132. (A magnificent discovery of microfossils much like those in Doushantuo cherts and phosphates, beautifully illustrated, if a bit overenthusiastic in naming new species.)
Chapter 10. Animals Take the Stage
Key References on Nama Geology and Paleontology
Droser, M. L., S. Jensen, and J. G. Gehling. 2002. Trace fossils and substrates of the terminal Proterozoic-Cambrian transition: Implications for the record of early bilaterians and sediment mixing.
Proceedings of the National Academy of Sciences, USA
99: 12572–12576.
Germs, G.J.B. 1972. New shelly fossils from the Nama Group, Namibia (South West Africa).
American Journal of Science
272: 752–761.
Germs, G.J.B., A. H. Knoll, and G. Vidal. 1986. Latest Proterozoic microfossils from the Nama Group, Namibia (South West Africa).
Precambrian Research
73: 137–151.
Grant, S.W.F. 1990. Shell structure and distribution of
Cloudina
, a potential index fossil for the terminal Proterozoic.
American Journal of Science
290A: 261–294.
Grotzinger, J. P., S. A. Bowring, B. Z. Saylor, and A. J. Kaufman. 1995. Biostratigraphic and geochronologic constraints on early animal evolution.
Science
270: 598–604.
Grotzinger, J. P., W. A. Watters, and A. H. Knoll. 2000. Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia.
Paleobiology
26: 334–359.
Gürich, G. 1933. Die Kuibis-Fossilien der Nama Formation von Südwest-Afrika.
Paläontologische Zeitschrift
15: 137–154.
Narbonne, G. M., B. Z. Saylor, and J. P. Grotzinger. 1997. The youngest Ediacaran fossils from southern Africa.
Journal of Paleontology
71: 953–967.
Pflug, H. D. 1970, 1970, 1972. Zur Fauna der nama-Schichten in Südwest Afrika. I. Pteridinia, Bau und systematische Zugehörigkeit.
Palaeontolographica Abteilung A
134: 226–262; II. Rangidae, Bau und systematische Zugehörigkeit.
Palaeontolographica Abteilung A
135: 198–231; III. Erniettomorpha, Bau und systematische Zugehörigkeit.
Palaeontolographica Abteilung A
139: 134–170.
Wood, R. A., J. P. Grotzinger, and J.A.D. Dickson. 2002. Proterozoic modular biomineralized metazoan from the Nama Group.
Science
296: 2383–2386.
General References on Ediacaran Fossils and Their Interpretation
Buss, L. W., and A. Seilacher. 1994. The phylum Vendobionta: A sister group of the eumetazoa?
Paleobiology
20: 1–4. (A stimulating essay on the phylogenetic placement of vendobionts—a “limited modified withdrawal” from the extinct kingdom hypothesis.)
Fedonkin, M. A. 1990. Systematic description of the Vendian metazoa, pp. 71–120 in B. S. Sokolov and A. B. Iwanowski, editors,
The Vendian System
, volume I. Springer-Verlag, Berlin. (The best English-language summary of Fedonkin’s groundbreaking research on Ediacaran fossils from the White Sea, Russia.)
Fedonkin, M. A., and B. M. Waggoner. 1997. The late Precambrian fossil
Kimberella
is a mollusc-like bilaterian organism.
Nature
388: 868–871. (An important study, based on new fossils from the White Sea, that links an Ediacaran species to a bilaterian stem group.)
Gehling, J. M. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks.
Palaios
14: 40–57. (Offers the best available answer to the question of how Ediacaran animals became fossilized.)
Gehling, J. G., G. M. Narbonne, and M. M. Anderson. 2000. The first named Ediacaran body fossil,
Aspidella terranovica
.
Palaeontology
43: 427–456. (A good summary of discoidal fossils in Ediacaran assemblages and their biological interpretation.)
Glaessner, M. F. 1983.
The Dawn of Animal Life: A Biohistorical Study
. Cambridge University Press, Cambridge, 244 pp. (The valedictory statement by Ediacaran paleontology’s original master; summarizes Glaessner’s research on Australian and Namibian fossils.)
Jenkins, R.J.F. 1992. Functional and ecological aspects of Ediacaran assemblages, pp. 131–176 in J. H. Lipps and P. W. Signor, editors,
Origin and Evolution of the Metazoa.
Plenum, New York. (Key contribution from another leading interpreter of Ediacaran fossils.)
Narbonne, G. M. 1998. The Ediacara biota: A terminal Proterozoic experiment in the evolution of life.
GSA Today
8 (2): 1–7. (This primer provides a good starting point for students of Ediacaran paleontology.)
Runnegar, B. 1995. Vendobionta or Metazoa? Developments in understanding the Ediacara “fauna.”
Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen
195: 303–318. (A thoughtful essay on the form, function, and biological relationships of Ediacaran fossils.)
Seilacher, A. 1992. Vendobionta and psammocorallia: Lost constructions of Precambrian evolution.
Geological Society of London Journal
149: 607–613. (A mature statement of Seilacher’s stimulating and controversial interpretations.)
Chapter 11. Cambrian Redux
Bengtson, S. 1994. The advent of animal skeletons, pp. 414–425 in S. Bengtson, editor,
Early Life on Earth
. Nobel Symposium 84, Columbia University Press, New York. (Wise commentary on predation and the Cambrian evolution of mineralized skeletons.)
Bengtson, S., S. Conway Morris, B. J. Cooper, P. A. Jell, and B. N. Runnegar. 1990. Early Cambrian fossils from South Australia.
Memoirs of the Association of
Australasian Paleontologists
9: 1–364. (An exceptionally fine treatment of Cambrian small shelly fossils.)
Bowring, S. A., and D. H. Erwin. 1998. A new look at evolutionary rates in deep time: Uniting paleontology and high-precision geochronology.
GSA Today
8 (9): 1–8. (Lays out the modern timescale for early animal diversification.)
Budd, G. E., and S. Jensen. 2000. A critical reappraisal of the fossil record of the bilaterian phyla.
Biological Reviews
75: 253–295. (A lawyerly but valuable essay on Cambrian animals, stressing that most are stem members of bilaterian phyla or classes.)
Carroll, S. B., J. K. Grenier, and S. C. Weatherbee. 2001.
From DNA to Diversity
. Blackwell Scientific, Oxford. (A superb introduction to developmental genetics and animal evolution.)
Chen, J., and G. Zhou. 1997. Biology of the Chenjiang fauna.
Bulletin of the National Museum of Natural Science (Taiwan)
10: 11–106. (A well-illustrated account of Burgess’s older brother.)
Conan Doyle, A. 1892.
Silver Blaze
, reprinted in
Complete Sherlock Holmes
. Doubleday, New York, 1960. (Source of the quote about the dog that did not bark.)
Conway Morris, S. 1998. See references to
chapter 1
.
Davidson, E. H. 2001.
Genomic Regulatory Systems: Development and Evolution
. Academic Press, New York. (A masterful advanced account of developmental genetics and its evolutionary consequences. Includes discussion of Davidson’s stimulating and controversial hypothesis that early animals looked much like living larvae and only with the evolution of “set-aside cells” gained the capacity for large complex bodies.)
Eliott, T. S. 1942. Little Gidding, in
The Complete Poems and Plays, 1909–1950
. Harcourt Brace and World, New York. (Excerpt from “Little Gidding” in Four Quartets, copyright 1942 by T. S. Eliot and renewed 1970 by Esme Valerie Eliot, reprinted by permission of Harcourt, Inc.)
Fortey, R. A., D.E.G. Briggs, and M. A. Wills. 1996. The Cambrian evolutionary ‘Explosion’: Decoupling cladogenesis from morphological disparity.
Biological Journal of the Linnaean Society
57: 13–33. (Makes the case that animal lineages may have diverged earlier but evolved their characteristic body plans only in the Cambrian.)
Garey, J. R., and A. Schmidt-Rhaesa. 1998. The essential role of “minor” phyla in molecular studies of animal evolution.
American Zoologist
38: 907–917. (Simultaneously a ringing defense of the “little guys,” phyla of small animals seldom included in phylogenetic analyses, and a good discussion of animal phylogeny as revealed by molecular data.)
Gould, S. J. 1989.
Wonderful Life: The Burgess Shale and the Nature of History
. Norton, New York. (A page-turner that provides elegant descriptions of Burgess animals, with stimulating if controversial interpretations of their paleobiology.)
Jensen, S. 1992. Trace fossils from the lower Cambrian Mickwitzia sandstone, south-central Sweden.
Fossils and Strata
42: 1–111. (A good place to learn about trace fossils across the Proterozoic-Cambrian boundary.)
Knoll, A. H., and S. B. Carroll. 1999. Early animal evolution: Emerging views from comparative biology and geology.
Science
284: 2129–2137. (An attempt to integrate insights from developmental genetics and paleontology—Cliff Notes for this chapter.)
Miklos, G.L.G. 1993. Emergence of organizational complexities during metazoan evolution: Perspectives from molecular biology, palaeontology, and neo-Darwinism.
Association of Australasian Palaeontologists, Memoir
15: 7–41. (Stresses the importance of emergent properties of evolving organic systems, especially the nervous system of early animals.)
Ruppert, E. E., and R. D. Barnes. 1994.
Invertebrate Zoology
, sixth edition. Saunders College Publishing, Fort Worth. (A good place to learn about the tremendous diversity of animal life.)
Smith, A. 1999. Dating the origins of metazoan body plans.
Evolution and Development
1: 138–142. (A thoughtful attempt to reconcile molecular clock and geological dates for early animal divergence.)
Valentine, J. W., D. Jablonski, and D. H. Erwin. 1999. Fossils, molecules and embryos: New perspectives on the Cambrian Explosion.
Development
126: 851–859. (Another view on how genetics and paleontology may fit together in studies of early animal evolution.)
Wray, G. A., J. S. Levinton, and L. H. Shapiro. 1996. Molecular evidence for deep Precambrian divergences among metazoan phyla.
Science
274: 568–573. (Uses molecular clocks to argue for early animal diversification.)
Chapter 12. Dynamic Earth, Permissive Ecology
Key References on Late Proterozoic Ice Ages
Evans, D.A.D. 2000. Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox.
American Journal of Science
300: 347–433.
Harland, W. B., and M. S. Rudwick. 1964. The great Infra–Cambrian ice age.
Scientific American
211 (2): 28–36.
Hoffman, P. F. 1999. The break-up of Rodinia, birth of Gondwana, true polar wander, and the Snowball Earth.
Journal of African Earth Sciences
28: 17–33. Hoffman, P. F., A. J. Kaufman, G. P. Halverson, and D. P. Schrag. 1998. A Neoproterozoic Snowball Earth.
Science
281: 1342–1346.