Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100 (33 page)

BOOK: Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100
4.22Mb size Format: txt, pdf, ePub
ZAPPING CANCER CELLS

Not only can these nanoparticles seek out cancer cells and deliver chemicals to kill them, they might actually be able to kill them on the spot. The principle behind this is simple. These nanoparticles can absorb light of a certain frequency. By focusing laser light on them, they heat up, or vibrate, destroying any cancer cells in the vicinity by rupturing their cell walls. The key, therefore, is to get these nanoparticles close enough to cancer cells.

Several groups have already developed prototypes. Scientists at the Argonne National Laboratory and the University of Chicago have created titanium dioxide nanoparticles (titanium dioxide is a common chemical found in sunscreen). This group found that they could bind these nanoparticles to an antibody that naturally seeks out certain cancer cells called glioblastoma multiforme (GBM). So these nanoparticles, by hitching a ride on this antibody, are carried to the cancer cells. Then a white light is illuminated for five minutes, heating and eventually killing the cancer cells. Studies have shown that 80 percent of the cancer cells can be destroyed in this way.

These scientists have also devised a second way to kill cancer cells. They created tiny magnetic disks that can vibrate violently. Once these disks are led to the cancer cells, a small external magnetic field can be passed over them, causing them to shake and tear apart the cell walls of the cancer. In tests, 90 percent of the cancer cells were killed after just 10 minutes of shaking.

This result is not a fluke. Scientists at the University of California at Santa Cruz have devised a similar system using gold nanoparticles. These particles are only 20 to 70 nanometers across and only a few atoms thick, arranged in the shape of a sphere. Scientists used a certain peptide that is known to be attracted to skin cancer cells. This peptide was made to connect with the gold nanoparticles, which then were carried to the skin cancer cells in mice. By shining an infrared laser, these gold particles could destroy the tumor cells by heating them up. “It’s basically like putting a cancer cell in hot water and boiling it to death. The more heat the metal nanospheres generate, the better,” says Jin Zhang, one of the researchers.

So in the future, nanotechnology will detect cancer colonies years to decades before they can form a tumor, and nanoparticles circulating in our blood might be used to destroy these cells. The basic science is being done today.

NANOCARS IN OUR BLOOD

One step beyond the nanoparticle is the nanocar, a device that can actually be guided in its travels inside the body. While the nanoparticle is allowed to circulate freely in the bloodstream, these nanocars are like remote-controlled drones that can be steered and piloted.

James Tour and his colleagues at Rice University have made such a nanocar. Instead of wheels, it has four buckyballs. One future goal of this research is to design a molecular car that can push a tiny robot around the bloodstream, zapping cancer cells along the way or delivering lifesaving drugs to precise locations in the body.

But one problem with the molecular car is that it has no engine. Scientists have created more and more sophisticated molecular machines, but creating a molecular power source has been one of the main roadblocks. Mother Nature has solved this problem by using the molecule adenosine triphosphate (ATP) as her energy source. The energy of ATP makes life possible; it energizes every second of our muscles’ motions. This energy of ATP is stored within an atomic bond between its atoms. But creating a synthetic alternative has proven difficult.

Thomas Mallouk and Ayusman Sen of Pennsylvania State University have found a potential solution to this problem. They have created a nanocar that can actually move tens of microns per second, which is the speed of most bacteria. (They first created a nanorod, made of gold and platinum, the size of a bacterium. The nanorod was placed into a mixture of water and hydrogen peroxide. This created a chemical reaction at either end of the nanorod that caused protons to move from one end of the rod to the other. Since the protons push against the electrical charges of the water molecule, this propels the nanorod forward. The rod continues to move forward as long as there is hydrogen peroxide in the water.)

Steering these nanorods is also possible using magnetism. Scientists have embedded nickel disks inside these nanorods, so they act like compass needles. By moving an ordinary refrigerator magnet next to these nanorods, you can steer them in any direction you want.

Yet another way to steer a molecular machine is to use a flashlight. Light can break up the molecules into positive and negative ions. These two types of ions diffuse through the medium at different speeds, which sets up an electric field. The molecular machines are then attracted by these electric fields. So by pointing the flashlight one can steer the molecular machines in that direction.

I had a demonstration of this when I visited the laboratory of Sylvain Martel of the Polytechnic Montréal in Canada. His idea was to use the tails of ordinary bacteria to propel a tiny chip forward in the bloodstream. So far, scientists have been unable to manufacture an atomic motor, like the one found in the tails of bacteria. Martel asked himself: If nanotechnology could not make these tiny tails, why not use the tails of living bacteria?

He first created a computer chip smaller than the period at the end of this sentence. Then he grew a batch of bacteria. He was able to place about eighty of these bacteria behind the chip, so that they acted like a propeller that pushed the chip forward. Since these bacteria were slightly magnetic, Martel could use external magnets to steer them anywhere he wanted.

I had a chance to steer these bacteria-driven chips myself. I looked in a microscope, and I could see a tiny computer chip that was being pushed by several bacteria. When I pressed a button, a magnet turned on, and the chip moved to the right. When I released the button, the chip stopped and then moved randomly. In this way, I could actually steer the chip. While doing this, I realized that one day, a doctor may be pushing a similar button, but this time directing a nanorobot in the veins of a patient.

Molecular robots will be patrolling our bloodstreams, identifying and zapping cancer cells and pathogens. They could revolutionize medicine. (
photo credit 4.1
)

One can imagine a future where surgery is completely replaced by molecular machines moving through the bloodstream, guided by magnets, homing in on a diseased organ, and then releasing medicines or performing surgery. This could make cutting the skin totally obsolete. Or, magnets could guide these nanomachines to the heart in order to remove a blockage of the arteries.

DNA CHIPS

As we mentioned in
Chapter 3
, in the future we will have tiny sensors in our clothes, body, and bathroom, constantly monitoring our health and detecting diseases like cancer years before they become a danger. The key to this is the DNA chip, which promises a “laboratory on a chip.” Like the tricorder of
Star Trek,
these tiny sensors will give us a medical analysis within minutes.

Today, screening for cancer is a long, costly, and laborious process, often taking weeks. This severely limits the number of cancer analyses that can be performed. However, computer technology is changing all this. Already, scientists are creating devices that can rapidly and cheaply detect cancer, by looking for certain biomarkers produced by cancer cells.

Using the very same etching technology used in computer chips, it is possible to etch a chip on which there are microscopic sites that can detect specific DNA sequences or cancer cells.

Using transistor etching technology, DNA fragments are embedded into the chip. When fluids are passed over the chip, these DNA fragments can bind to specific gene sequences. Then, using a laser beam, one can rapidly scan the entire site and identify the genes. In this way, genes do not have to be read one by one as before, but can be scanned by the thousands all at once.

In 1997, the Affymetrix company released the first commercial DNA chip that could rapidly analyze 50,000 DNA sequences. By 2000, 400,000 DNA probes were available for a few thousand dollars. By 2002, prices had dropped to $200 for even more powerful chips. Prices continue to plunge due to Moore’s law, down to a few dollars.

Shana Kelley, a professor at the University of Toronto’s medical school, said, “Today, it takes a room filled with computers to evaluate a clinically relevant sample of cancer biomarkers and the results aren’t quickly available. Our team was able to measure biomolecules on an electronic chip the size of your fingertip.” She also envisions the day when all the equipment to analyze this chip will be shrunk to the size of a cell phone. This lab on a chip will mean that we can shrink a chemical laboratory found in a hospital or university down to a single chip that we can use in our own bathrooms.

Doctors at Massachusetts General Hospital have created their own custom-made biochip that is 100 times more powerful than anything on the market today. Normally, circulating tumor cells (CTCs) make up fewer than one in a million cells in our blood, but these CTCs eventually kill us if they proliferate. The new biochip is sensitive enough to find one in a billion CTCs circulating in our blood. As a result, this chip has been proven to detect lung, prostate, pancreatic, breast, and colorectal cancer cells by analyzing as little as a teaspoon of blood.

Standard etching technology carves out chips containing 78,000 microscopic pegs (each 100 microns tall). Under an electron microscope, they resemble a forest of round pegs. Each peg is coated with an antibody for the epithelial cell adhesion molecule (EpCAM), which is found in many types of cancer cells but is absent in ordinary cells. EpCAM is vital for cancer cells to communicate with one another as they form a tumor. If blood is passed through the chip, the CTC cells stick to the round pegs. In clinical trials, the chip successfully detected cancers in 115 out of 116 patients.

The proliferation of these labs on a chip will also radically affect the cost of diagnosing disease. At present, it may cost several hundred dollars to have a biopsy or chemical analysis, which might take a few weeks. In the future, it may cost a few pennies and take a few minutes. This could revolutionize the speed and accessibility of cancer diagnoses. Every time we brush our teeth, we will have a thorough checkup for a variety of diseases, including cancer.

Leroy Hood and his colleagues at the University of Washington created a chip, about 4 centimeters wide, that can test for specific proteins from a single drop of blood. Proteins are the building blocks of life. Our muscles, skin, hair, hormones, and enzymes are all made of proteins. Detecting proteins from diseases like cancer could lead to an early warning system for the body. At present, the chip costs only ten cents and can identify a specific protein within ten minutes, so it is several million times more efficient than the previous system. Hood envisions a day when a chip will be able to rapidly analyze hundreds of thousands of proteins, alerting us to a wide variety of diseases years before they become serious.

CARBON NANOTUBES

One preview of the power of nanotechnology is carbon nanotubes. In principle, carbon nanotubes are stronger than steel and can also conduct electricity, so carbon-based computers are a possibility. Although they are enormously strong, one problem is that they must be in pure form, and the longest pure carbon fiber is only a few centimeters long. But one day, entire computers may be made of carbon nanotubes and other molecular structures.

Carbon nanotubes are made of individual carbon atoms bonded to form a tube. Imagine chicken wire, where every joint is a carbon atom. Now roll up the chicken wire into a tube, and you have the geometry of a carbon nanotube. Carbon nanotubes are formed every time ordinary soot is created, but scientists never realized that carbon atoms could bond in such a novel way.

The near-miraculous properties of carbon nanotubes owe their power to their atomic structure. Usually, when you analyze a solid piece of matter, like a rock or wood, you are actually analyzing a huge composite of many overlapping structures. It is easy to create tiny fractures within this composite, which cause it to break. So the strength of a material depends on imperfections in its molecular structure. For example, graphite is made of pure carbon, but it is extremely soft because it is made of layers that can slide past each other. Each layer consists of carbon atoms, each of which is bonded with three other carbon atoms.

Diamonds are also made of pure carbon, but they are the strongest naturally occurring mineral. The carbon atoms in diamonds are arranged in a tight, interlocking crystal structure, giving them their phenomenal strength. Similarly, carbon nanotubes owe their amazing properties to their regular atomic structure.

Already, carbon nanotubes are finding their way into industry. Because of their conductivity, they can be used to create cables to carry large amounts of electrical power. Because of their strength, they can be used to create substances tougher than Kevlar.

Other books

Beneath Innocence (Deception #2.5) by Ker Dukey, D.h Sidebottom
Love by the Book by Melissa Pimentel
The Shards of Serenity by Yusuf Blanton
A Rich Man's Baby by Daaimah S. Poole
The Risk Agent by Ridley Pearson
Unbecoming by Rebecca Scherm
9780981988238 by Leona Wisoker