Sex, Bombs and Burgers (19 page)

Read Sex, Bombs and Burgers Online

Authors: Peter Nowak

BOOK: Sex, Bombs and Burgers
13.78Mb size Format: txt, pdf, ePub

The amount of technology NASA has transferred to American industry has been, if you’ll pardon the pun, astronomical. Never mind solar power and all the aerospace
improvements, such as lighter-weight building materials, more efficient fuels and better sensor systems. There has also been a surfeit of medical gadgetry, including monitors for operating rooms that gauge patient oxygen, carbon dioxide and nitrogen concentrations, invented during the Gemini missions; bioreactors for developing new drugs and antibodies, from the space shuttle program; and micro-invasive arthroscopic surgery, made possible with technology from the Hubble telescope. The shuttle program has also improved roadways by introducing the idea of safety grooving, the cutting of tiny notches into concrete to increase traction; the process was first used on NASA runways. The Mars probe missions developed a new rubberized material five times stronger than steel for landers, which has since been used to add 16,000 kilometres to the tread life of commercial radial tires. On the consumer side, there’s memory foam—used in everything from seats on amusement park rides to mattresses and pillows—Dustbusters, UV coating for sunglasses, frictionless swimsuits and even the Super Soaker squirt gun, invented at the Jet Propulsion Lab in California.
14
These examples are only the tip of the iceberg. Heck, Wernher von Braun, the former Nazi SS officer turned head of the early American space program, even made a contribution to consumer life by helping Walt Disney design his theme park.

The agency’s technology transfer to the food industry has also been huge. One of the first fields singled out to benefit from space food research was health care. In the mid-seventies hospitals and nursing homes were suffering from a condition known as “tired food.” Major medical institutions have to serve hundreds or thousands of meals a day, and there were often lapses between when the food was prepared in a central kitchen
and when it was actually delivered. By the time the patient got his or her meal, it was often cold, tasted terrible and had lost many of its nutrients. NASA’s solution was the “dish-oven,” a hot plate–like contraption developed for the Apollo moon lander in partnership with Minnesota-based conglomerate 3M. The oven, which looked like an oversized soap dish, warmed food from beneath by zapping it with electricity. It was also highly energy efficient, as it needed to be for space missions, and used 60 percent less power than a regular oven. Moreover, it was small, lightweight and portable and could be set up in a patient’s room, which decentralized food production by allowing meals to be warmed up on the spot.
15

In 1991 3M refined the idea into the Food Service System 2, which stacked full meals on trays in carts that were then refrigerated. At mealtime, the carts were removed from their refrigeration units, wheeled to their respective floors and plugged in for heating.
16
NASA also piloted a project during the seventies called the Meal System for the Elderly in which it supplied freeze-dried food for homebound, handicapped and temporarily ill seniors. Oregon Freeze Dry, one of the agency’s major suppliers, delivered its Mountain House meals such as spaghetti with meat sauce and “tuna a la Neptune,” which were prepared by adding water, to 3.5 million people. The poor seniors—they turned out to be guinea pigs for what is now one of the most successful brands of camping food.
17

It didn’t take long for other major food companies to see the benefits of space technology. In 1972, with help from NASA, Chicago-based meat packer Armour turned a lunar lander strain gauge into the “Tenderometer,” a device that could predict the tenderness of meat. The company developed a ten-pronged fork
that, when stuck into a side of meat, could measure the degree to which it resisted penetration. The device helped Armour market a successful premium line of beef known as TesTender.
18
Tip Top Poultry, meanwhile, used soundproof panels designed with NASA funding at one of its plants in Georgia, where high noise levels were degrading worker morale and safety. Conventional, plastic sound-absorbing panels weren’t strong enough to stand up to the high-pressure water cleaning required by poultry plants, so the tougher fibre-reinforced polyester film developed for NASA to protect against vapours was a godsend.
19

Other food makers were attracted to the actual fuel used to launch rockets into space. Liquid hydrogen, used by NASA because of its light weight and high energy output, turned out to be perfect for making margarine and for keeping cooking oils fresh; it was also handy for pharmaceutical manufacturing and removing sulphur in gasoline production. In 1981 Pennsylvaniabased Air Products and Chemicals, riding high off NASA contracts, opened a new plant in Sarnia, Ontario, to cater to this consumer market. “These applications would not exist today had it not been for our government experience,” said the company chairman. “Our work on government contracts gave us the technological know-how for large-scale production of liquid hydrogen, enabling the cost reductions through economies of scale. That paved the way for expanded private-sector use.”
20

But NASA’s biggest hit in the food-processing industry was HACCP, or the Hazard Analysis and Critical Control Point system. In 1959 the agency contracted Pillsbury, the giggling doughboy people, to create foods for the early Mercury and Gemini programs (and thus supply John Glenn with his applesauce).
21
Throughout the projects, the company discovered
that its own food-testing methods were woefully inadequate compared to NASA’s exacting needs. “By using standard methods of quality control there was absolutely no way we could be assured there wouldn’t be a problem,” a Pillsbury executive said. “This brought into serious question the then prevailing system of quality control in our plants.... If we had to do a great deal of destructive testing to come to a reasonable conclusion that the product was safe to eat, how much were we missing in the way of safety issues by principally testing only the end product and raw materials?”
22

Pillsbury decided to completely overhaul its qualitycontrol processes and reorient testing so that problems were detected before they happened, rather than after the fact. The company became the first American food processor to begin testing ingredients, the product, the conditions of processing, handling, storing, packaging, distribution and consumer use of directions to identify any possible problem areas. Pillsbury had its HACCP system in place for space food production by the time the Apollo program began and extended it to consumer plants shortly after the 1969 moon landing. The company then taught a course in HACCP to personnel at the Food and Drug Administration, leading to the publication of the Low Acid Canned Foods Regulations in the mid-seventies. The endorsements kept coming, with the National Academy of Sciences giving HACCP a thumbs-up in 1985, followed by the National Advisory Committee on Microbiological Criteria for Foods and the World Health Organization later in the eighties. In 1991 the U.S. Department of Agriculture’s Food Safety and Inspection Service said HACCP was “the most intensive food inspection system in the world,” while the company bragged
that none of the 130 safety-related recalls between 1983 and 1991 were Pillsbury products.
23
The system was adopted as law in the United States during the nineties and in 1994, the International HACCP Alliance was formed to spread the standards worldwide. By the turn of the century, most major food growers, harvesters, transporters and processors in the developed world were working off some variation of Pillsbury’s NASA-developed standard.

Judging a Food by Its Cover

NASA’s technological contributions also spread directly to consumer food products. In the eighties, the agency discovered that a micro-algae it was testing as an oxygen source and waste disposal aid was actually a decent nutritional supplement. Scientists at Maryland-based Martek Biosciences found the algae produced docosahexaenoic acid (DHA) and arachidonic acid (ARA), rare fatty acids that play key roles in infant development and adult health. DHA is particularly hard to come by, as it is only found in breast milk. Martek came up with two nutritional supplements, life’sDHA and life’sARA, and marketed them to food companies. The supplements are now used by major food companies, including General Mills, Yoplait, Odwalla and Kellogg, and are found in products in sixty-five countries. An estimated 90 percent of all infant formulas in the United States use them, and about twenty-four million babies worldwide have consumed the algae.
24

Space research has also helped speed up pizza and submarine sandwich preparation. In the nineties NASA contracted Dallasbased Enersyst Development Center to help design a compact and energy-efficient oven for the International Space Station.
The company came up with a new cooking technique called microwave-assisted air impingement, which blasts food directly with jets of hot air rather than warming the entire oven cavity. The technique cooks food faster—up to four times quicker than a conventional oven—and more consistently, so it retains more of its flavour and texture. Enersyst licensed the technology to food processors and commercial restaurants in the late nineties and by 2002 had more than a hundred thousand customers around the world, including the Domino’s and Pizza Hut chains, where it cut cooking times from twenty-seven minutes to six.
25
The company also teamed up with home appliance maker Thermador in 1997 to offer the JetDirect, but this home oven never took off because its high price tag—more than $5,000— couldn’t compete with the falling cost of microwave ovens. In 2004 Enersyst was acquired by Dallas-based TurboChef Technologies, which supplies Subway, Dunkin’ Donuts and Starbucks with their high-speed ovens.

The consumer product that NASA and Natick scientists are most eager to discuss is one they jointly designed: the flexible “retort” pouch, which is finally starting to take off in grocery stores. The pouch, which is simply heated and cut open (or vice versa), is made from a plastic-aluminum blend and offers several advantages over canned goods. Like a can, it keeps out food’s two biggest enemies, air and moisture, but because it’s much thinner the food inside doesn’t need to be cooked as long, which retains more natural flavours, textures and nutrients. This also means that fewer additives and chemicals need to be added to the food to keep it stable. And since shipping costs on food are calculated according to mass and volume, the pouch’s lighter weight and more compactable form saves money for producers,
which they can either pocket as profit or pass on to consumers through lower prices.

The metallized, foil-like material was originally developed by NASA to help bounce signals off communications satellites, but was then repurposed to insulate spacecraft from radiation and extreme temperatures. It’s since been used in tents, rafts, blankets, medical bags and those reflective cardboard things you stick in your windshield in the summer to stop your parked car from turning into a sauna.

Natick found the substance very handy, and after winning FDA approval for it in 1980, used it to create flexible pouches for MREs (Meals, Ready to Eat). NASA followed suit and now both labs use the pouches for most meals. North American food companies tried to sell products in pouches in fits and starts during the eighties and nineties, but none really took off, according to Natick’s Patrick Dunne, because they adopted the same sort of drab packaging used by NASA and the military. The pouches did better in Europe and Asia because food producers there remembered that consumers actually care what packaging looks like—colourful and shiny sells, olive green with block letters does not.

North American producers have now remembered that key tenet, and a flood of retort-pouched foods, from tuna and salmon to soups and rice dishes to fruits and vegetables—even Spam “singles”—has hit grocery stores over the past few years. With the American market for pouches growing at about 15 percent a year, it looks like they may yet replace cans.
26
“The graphics have really sold the product,” Dunne says. “They did a nice marketing job.” More importantly, Perchonok says, NASA and Natick made the pouches economical for food companies by performing all of the
expensive research and development. “We’ve made that process a lot less expensive and got the packaging materials available at a price they can afford, so they are moving in that direction.”

Nyet, Nyet, No Space Food Yet

What about the Russians? They’ve been launching into space for just as long as the Americans, so surely they must have come up with some pretty impressive food technology too, right? Like irradiated caviar or freeze-dried vodka?

Well, no. The Russian space program has taken a very different tack to NASA. The Soviets/Russians have generally used off-theshelf canned goods, which has saved them millions on research and development of newfangled space foods. The extra weight incurred by the cans hasn’t been a problem, because Soviet/ Russian rockets have typically been bigger and more powerful than NASA’s. The downside is that those bigger, more powerful rockets have required more fuel to launch, which costs more. On a pure cost-analysis basis, there’s no telling whether Russia has ultimately come out ahead by not spending on food research.

As for the food itself, there have been few complaints from those who have actually had to eat it. Canadian astronaut Dave Williams, who went into orbit aboard Space Shuttle Columbia in 1998 and then up to the International Space Station for twelve days in 2007, was a big fan of canned Russian space foods such as caviar and borscht. “There are certainly downsides to using a can because once you take the food out you’re left with it. Unless you have a trash compactor, the volume of your trash builds up correspondingly,” he says. “But a number of the foods are spicy, which makes them quite palatable. I was impressed with the juices they had. Instead of being a crystal that gets water added
to it, these were real fruit juices. It was remarkable to get to have those.”
27

Other books

Flowers on the Mersey by June Francis
When First They Met by Debbie Macomber
Vanish in an Instant by Margaret Millar
Zenn Scarlett by Christian Schoon
A Matchmaker's Match by Nina Coombs Pykare
Wicked Secrets by Anne Marsh
For the Game by Amber Garza
Putting Out Old Flames by Allyson Charles