Authors: Rachel Carson
In addition to quail, wild turkeys were seriously reduced by the fire ant program. Although 80 turkeys had been counted on an area in Wilcox County, Alabama, before heptachlor was applied, none could be found the summer after treatmentânone, that is, except a clutch of unhatched eggs and one dead poult. The wild turkeys may have suffered the same fate as their domestic brethren, for turkeys on farms in the area treated with chemicals also produced few young. Few eggs hatched and almost no young survived. This did not happen on nearby untreated areas.
The fate of the turkeys was by no means unique. One of the most widely known and respected wildlife biologists in the country, Dr. Clarence Cottam, called on some of the farmers whose property had been treated. Besides remarking that "all the little tree birds" seemed to have disappeared after the land had been treated, most of these people reported losses of livestock, poultry, and household pets. One man was "irate against the control workers," Dr. Cottam reported, "as he said he buried or otherwise disposed of 19 carcasses of his cows that had been killed by the poison and he knew of three or four additional cows that died as a result of the same treatment. Calves died that had been given only milk since birth."
The people Dr. Cottam interviewed were puzzled by what had happened in the months following the treatment of their land. One woman told him she had set several hens after the surrounding land had been covered with poison, "and for reasons she did not understand very few young were hatched or survived." Another farmer "raises hogs and for fully nine months after the broadcast of poisons, he could raise no young pigs. The litters were born dead or they died after birth." A similar report came from another, who said that out of 37 litters that might have numbered as many as 250 young, only 31 little pigs survived. This man had also been quite unable to raise chickens since the land was poisoned.
The Department of Agriculture has consistently denied livestock losses related to the fire ant program. However, a veterinarian in Bainbridge, Georgia, Dr. Otis L. Poitevint, who was called upon to treat many of the affected animals, has summarized his reasons for attributing the deaths to the insecticide as follows. Within a period of two weeks to several months after the fire ant poison was applied, cattle, goats, horses, chickens, and birds and other wildlife began to suffer an often fatal disease of the nervous system. It affected only animals that had access to contaminated food or water. Stabled animals were not affected. The condition was seen only in areas treated for fire ants. Laboratory tests for disease were negative. The symptoms observed by Dr. Poitevint and other veterinarians were those described in authoritative texts as indicating poisoning by dieldrin or heptachlor.
Dr. Poitevint also described an interesting case of a two-month-old calf that showed symptoms of poisoning by heptachlor. The animal was subjected to exhaustive laboratory tests. The only significant finding was the discovery of 79 pans per million of heptachlor in its fat. But it was five months since the poison had been applied. Did the calf get it directly from grazing or indirectly from its mother's milk or even before birth? "If from the milk," asked Dr. Poitevint, "why were not special precautions taken to protect our children who drank milk from local dairies?"
Dr. Poitevint's report brings up a significant problem about the contamination of milk. The area included in the fire ant program is predominantly fields and croplands. What about the dairy cattle that graze on these lands? In treated fields the grasses will inevitably carry residues of heptachlor in one of its forms, and if the residues are eaten by the cows the poison will appear in the milk. This direct transmission into milk had been demonstrated experimentally for heptachlor in 1955, long before the control program was undetaken, and was later re-potted for dieldrin, also used in the fire ant program.
The Department of Agriculture's annual publications now list heptachlor and dieldrin among the chemicals that make forage plants unsuitable for feeding to dairy animals or animals being finished for slaughter, yet the control divisions of the Department promote programs that spread heptachlor and dieldrin over substantial areas of grazing land in the South. Who is safeguarding the consumer to see that no residues of dieldrin or heptachlor are appearing in milk? The United States Department of Agriculture would doubtless answer that it has advised farmers to keep milk cows out of treated pastures for 30 to 90 days. Given the small size of many of the farms and the large-scale nature of the programâmuch of the chemical applied by planesâit is extremely doubtful that this recommendation was followed or could be. Nor is the prescribed period adequate in view of the persistent nature of the residues.
The Food and Drug Administration, although frowning on the presence of any pesticide residues in milk, has little authority in this situation. In most of the states included in the fire ant program the dairy industry is small and its products do not cross state lines. Protection of the milk supply endangered by a federal program is therefore left to the states themselves. Inquiries addressed to the health officers or other appropriate officials of Alabama, Louisiana, and Texas in 1959 revealed that no tests had been made and that it simply was not known whether the milk was contaminated with pesticides or not.
Meanwhile, after rather than before the control program was launched, some research into the peculiar nature of heptachlor was done. Perhaps it would be more accurate to say that someone looked up the research already published, since the basic fact that brought about belated action by the federal government had been discovered several years before, and should have influenced the initial handling of the program. This is the fact that heptachlor, after a short period in the tissues of animals or plants or in the soil, assumes a considerably more toxic form known as heptachlor epoxide. The epoxide is popularly described as "an oxidation product" produced by weathering. The fact that this transformation could occur had been known since 1952, when the Food and Drug Administration discovered that female rats, fed 30 parts per million of heptachlor, had stored 165 parts per million of the more poisonous epoxide only 2 weeks later.
These facts were allowed to come out of the obscurity of biological literature in 1959, when the Food and Drug Administration took action which had the effect of banning any residues of heptachlor or its epoxide on food. This ruling put at least a temporary damper on the program; although the Agriculture Department continued to press for its annual appropriations for fire ant control, local agricultural agents became increasingly reluctant to advise farmers to use chemicals which would probably result in their crops being legally unmarketable.
In short, the Department of Agriculture embarked on its program without even elementary investigation of what was already known about the chemical to be usedâor if it investigated, it ignored the findings. It must also have failed to do preliminary research to discover the minimum amount of the chemical that would accomplish its purpose. After three years of heavy dosages, it abruptly reduced the rate of application of heptachlor from 2 pounds to 1¼ pounds per acre in 1959; later on to ½ pound per acre, applied in two treatments of ¼ pound each, 3 to 6 months apart. An official of the Department explained that "an aggressive methods improvement program" showed the lower rate to be effective. Had this information been acquired before the program was launched, a vast amount of damage could have been avoided and the taxpayers could have been saved a great deal of money.
In 1959, perhaps in an attempt to offset the growing dissatisfaction with the program, the Agriculture Department offered the chemicals free to Texas landowners who would sign a re-lease absolving federal, state, and local governments of responsibility for damage. In the same year the State of Alabama, alarmed and angry at the damage done by the chemicals, refused to appropriate any further funds for the project. One of its officials characterized the whole program as "ill advised, hastily conceived, poorly planned, and a glaring example of riding roughshod over the responsibilities of other public and private agencies." Despite the lack of state funds, federal money continued to trickle into Alabama, and in 1961 the legislature was again persuaded to make a small appropriation. Meanwhile, farmers in Louisiana showed growing reluctance to sign up for the project as it became evident that use of chemicals against the fire ant was causing an upsurge of insects destructive to sugarcane. Moreover, the program was obviously accomplishing nothing. Its dismal state was tersely summarized in the spring of 1962 by the director of entomology research at Louisiana State University Agricultural Experiment Station, Dr. L. D. Newsom: "The imported fire ant 'eradication' program which has been conducted by state and federal agencies is thus far a failure. There are more infested acres in Louisiana now than when the program began."
A swing to more sane and conservative methods seems to have begun. Florida, reporting that "there are more fire ants in Florida now than there were when the program started," announced it was abandoning any idea of a broad eradication program and would instead concentrate on local control.
Effective and inexpensive methods of local control have been known for years. The mound-building habit of the fire ant makes the chemical treatment of individual mounds a simple matter. Cost of such treatment is about one dollar per acre. For situations where mounds are numerous and mechanized methods are desirable, a cultivator which first levels and then applies chemical directly to the mounds has been developed by Mississippi's Agricultural Experiment Station. The method gives 90 to 95 per cent control of the ants. Its cost is only $.23 per acre. The Agriculture Department's mass control program, on the other hand, cost about $3.50 per acreâthe most expensive, the most damaging, and the least effective program of all.
Â
T
H
E
C
O
N
T
A
M
I
N
A
T
I
O
N
of our world is not alone a matter of mass spraying. Indeed, for most of us this is of less importance than the innumerable small-scale exposures to which we are subjected day by day, year after year. Like the constant dripping of water that in turn wears away the hardest stone, this birth-to-death contact with dangerous chemicals may in the end prove disastrous. Each of these recurrent exposures, no matter how slight, contributes to the progressive buildup of chemicals in our bodies and so to cumulative poisoning. Probably no person is immune to contact with this spreading contamination unless he lives in the most isolated situation imaginable. Lulled by the soft sell and the hidden persuader, the average citizen is seldom aware of the deadly materials with which he is surrounding himself; indeed, he may not realize he is using them at all.
So thoroughly has the age of poisons become established that anyone may walk into a store and, without questions being asked, buy substances of far greater death-dealing power than the medicinal drug for which he may be required to sign a "poison book" in the pharmacy next door. A few minutes' research in any supermarket is enough to alarm the most stouthearted customerâprovided, that is, he has even a rudimentary knowledge of the chemicals presented for his choice.
If a huge skull and crossbones were suspended above the insecticide department the customer might at least enter it with the respect normally accorded death-dealing materials. But instead the display is homey and cheerful, and, with the pickles and olives across the aisle and the bath and laundry soaps adjoining, the rows upon rows of insecticides are displayed. Within easy reach of a child's exploring hand are chemicals in
glass
containers. If dropped to the floor by a child or careless adult everyone nearby could be splashed with the same chemical that has sent spraymen using it into convulsions. These hazards of course follow the purchaser right into his home. A can of a mothproofing material containing DDD, for example, carries in very fine print the warning that its contents are under pressure and that it may burst if exposed to heat or open flame. A common insecticide for household use, including assorted uses in the kitchen, is chlordane. Yet the Food and Drug Administration's chief pharmacologist has declared the hazard of living in a house sprayed with chlordane to be "very great." Other household preparations contain the even more toxic dieldrin.
Use of poisons in the kitchen is made both attractive and easy. Kitchen shelf paper, white or tinted to match one's color scheme, may be impregnated with insecticide, not merely on one but on both sides. Manufacturers offer us do-it-yourself booklets on how to kill bugs. With push-button ease, one may send a fog of dieldrin into the most inaccessible nooks and crannies of cabinets, corners, and baseboards.