Silent Spring (37 page)

Read Silent Spring Online

Authors: Rachel Carson

BOOK: Silent Spring
9.33Mb size Format: txt, pdf, ePub

The chemical industry is perhaps understandably loath to face up to the unpleasant fact of resistance. Even in 1959, with more than 100 major insect species showing definite resistance to chemicals, one of the leading journals in the field of agricultural chemistry spoke of "real or imagined" insect resistance. Yet hopefully as the industry may turn its face the other way, the problem simply does not go away, and it presents some unpleasant economic facts. One is that the cost of insect control by chemicals is increasing steadily. It is no longer possible to stockpile materials well in advance; what today may be the most promising of insecticidal chemicals may be the dismal failure of tomorrow. The very substantial financial investment involved in backing and launching an insecticide may be swept away as the insects prove once more that the effective approach to nature is not through brute force. And however rapidly technology may invent new uses for insecticides and new ways of applying them, it is likely to find the insects keeping a lap ahead.

Darwin himself could scarcely have found a better example of the operation of natural selection than is provided by the way the mechanism of resistance operates. Out of an original
population, the members of which vary greatly in qualities of structure, behavior, or physiology, it is the "tough" insects that survive chemical attack. Spraying kills off the weaklings. The only survivors are insects that have some inherent quality that allows them to escape harm. These are the parents of the new generation, which, by simple inheritance, possesses all the qualities of "toughness" inherent in its forebears. Inevitably it follows that intensive spraying with powerful chemicals only makes worse the problem it is designed to solve. After a few generations, instead of a mixed population of strong and weak insects, there results a population consisting entirely of tough, resistant strains.

The means by which insects resist chemicals probably vary and as yet are not thoroughly understood. Some of the insects that defy chemical control are thought to be aided by a structural advantage, but there seems to be little actual proof of this. That immunity exists in some strains is clear, however, from observations like those of Dr. Briejèr, who reports watching flies at the Pest Control Institute at Springforbi, Denmark, "disporting themselves in DDT as much at home as primitive sorcerers cavorting over red-hot coals."

Similar reports come from other parts of the world. In Malaya, at Kuala Lumpur, mosquitoes at first reacted to DDT by leaving the treated interiors. As resistance developed, however, they could be found at rest on surfaces where the deposit of DDT beneath them was clearly visible by torchlight. And in an army camp in southern Taiwan samples of resistant bedbugs were found actually carrying a deposit of DDT powder on their bodies. When these bedbugs were experimentally placed in cloth impregnated with DDT, they lived for as long as a month; they proceeded to lay their eggs; and the resulting young grew and thrived.

Nevertheless, the quality of resistance does not necessarily depend on physical structure. DDT-resistant flies possess an
enzyme that allows them to detoxify the insecticide to the less toxic chemical DDE. This enzyme occurs only in flies that possess a genetic factor for DDT resistance. This factor is, of course, hereditary. How flies and other insects detoxify the organic phosphorus chemicals is less clearly understood.

Some behavioral habit may also place the insect out of reach of chemicals. Many workers have noticed the tendency of resistant flies to rest more on untreated horizontal surfaces than on treated walls. Resistant houseflies may have the stable-fly habit of sitting still in one place, thus greatly reducing the frequency of their contact with residues of poison. Some malaria mosquitoes have a habit that so reduces their exposure to DDT as to make them virtually immune. Irritated by the spray, they leave the huts and survive outside.

Ordinarily resistance takes two or three years to develop, although occasionally it will do so in only one season, or even less. At the other extreme it may take as long as six years. The number of generations produced by an insect population in a year is important, and this varies with species and climate. Flies in Canada, for example, have been slower to develop resistance than those in southern United States, where long hot summers favor a rapid rate of reproduction.

The hopeful question is sometimes asked, "If insects can become resistant to chemicals, could human beings do the same thing?" Theoretically they could; but since this would take hundreds or even thousands of years, the comfort to those living now is slight. Resistance is not something that develops in an individual. If he possesses at birth some qualities that make him less susceptible than others to poisons he is more likely to survive and produce children. Resistance, therefore, is something that develops in a population after time measured in several or many generations. Human populations reproduce at the rate of roughly three generations per century, but new insect generations arise in a matter of days or weeks.

"It is more sensible in some cases to rake a small amount of
damage in preference to having none for a time but paying for it in the long run by losing the very means of fighting," is the advice given in Holland by Dr. Briejèr in his capacity as director of the Plant Protection Service. "Practical advice should be 'Spray as little as you possibly can' rather than 'Spray to the limit of your capacity.'...Pressure on the pest population should always be as slight as possible."

Unfortunately, such vision has not prevailed in the corresponding agricultural services of the United States. The Department of Agriculture's
Yearbook
for 1952, devoted entirely to insects, recognizes the fact that insects become resistant but says, "More applications or greater quantities of the insecticides are needed then for adequate control." The Department does not say what will happen when the only chemicals left untried are those that render the earth not only insectless but lifeless. But in 1959, only seven years after this advice was given, a Connecticut entomologist was quoted in the
Journal of Agricultural and Food Chemistry
to the effect that on at least one or two insect pests
the last available
new material was then being used.

Dr. Briejèr says:

It is more than clear that we are traveling a dangerous road.
... We are going to have to do some very energetic research on other control measures, measures that will have to be biological, not chemical. Our aim should be to guide natural processes as cautiously as possible in the desired direction rather than to use brute force....

We need a more high-minded orientation and a deeper insight, which I miss in many researchers. Life is a miracle beyond our comprehension, and we should reverence it even where we have to struggle against it.... The resort to weapons such as insecticides to control it is a proof of insufficient knowledge and of an incapacity so to guide the processes of nature that brute force becomes unnecessary. Humbleness is in order; there is no excuse for scientific conceit here.

17. The Other Road

 

W
E
S
T
A
N
D
N
O
W
where two roads diverge. But unlike the roads in Robert Frost's familiar poem, they are not equally fair. The road we have long been traveling is deceptively easy, a smooth superhighway on which we progress with great speed, but at its end lies disaster. The other fork of the road—the one "less traveled by"—offers our last, our only chance to reach a destination that assures the preservation of our earth.

The choice, after all, is ours to make. If, having endured much, we have at last asserted our "right to know," and if, knowing, we have concluded that we are being asked to take senseless and frightening risks, then we should no longer accept the counsel of those who tell us that we must fill our world with poisonous chemicals; we should look about and see what other course is open to us.

A truly extraordinary variety of alternatives to the chemical control of insects is available. Some are already in use and have achieved brilliant success. Others are in the stage of laboratory testing. Still others are little more than ideas in the minds of imaginative scientists, waiting for the opportunity to put them to the test. All have this in common: they are
biological
solutions, based on understanding of the living organisms they seek to control, and of the whole fabric of life to which these organisms belong. Specialists representing various areas of the vast field of biology are contributing—entomologists, pathologists, geneticists, physiologists, biochemists, ecologists—all pouring their knowledge and their creative inspirations into the formation of a new science of biotic controls.

"Any science may be likened to a river," says a Johns Hopkins biologist, Professor Carl P. Swanson. "It has its obscure and unpretentious beginning; its quiet stretches as well as its rapids; its periods of drought as well as of fullness. It gathers momentum with the work of many investigators and as it is fed by other streams of thought; it is deepened and broadened by the concepts and generalizations that are gradually evolved."

So it is with the science of biological control in its modern sense. In America it had its obscure beginnings a century ago with the first attempts to introduce natural enemies of insects that were proving troublesome to farmers, an effort that sometimes moved slowly or not at all, but now and again gathered speed and momentum under the impetus of an outstanding success. It had its period of drought when workers in applied entomology, dazzled by the spectacular new insecticides of the
1940's, turned their backs on all biological methods and set foot on "the treadmill of chemical control." But the goal of an insect-free world continued to recede. Now at last, as it has become apparent that the heedless and unrestrained use of chemicals is a greater menace to ourselves than to the targets, the river which is the science of biotic control flows again, fed by new streams of thought.

Some of the most fascinating of the new methods are those that seek to turn the strength of a species against itself—to use the drive of an insect's life forces to destroy it. The most spectacular of these approaches is the "male sterilization" technique developed by the chief of the United States Department of Agriculture's Entomology Research Branch, Dr. Edward Knipling, and his associates.

About a quarter of a century ago Dr. Knipling startled his colleagues by proposing a unique method of insect control. If it were possible to sterilize and release large numbers of insects, he theorized, the sterilized males would, under certain conditions, compete with the normal wild males so successfully that, after repeated releases, only infertile eggs would be produced and the population would die out.

The proposal was met with bureaucratic inertia and with skepticism from scientists, but the idea persisted in Dr. Knipling's mind. One major problem remained to be solved before it could be put to the test—a practical method of insect sterilization had to be found. Academically, the fact that insects could be sterilized by exposure to X-ray had been known since 1916, when an entomologist by the name of G. A. Runner reported such sterilization of cigarette beetles. Hermann Muller's pioneering work on the production of mutations by X-ray opened up vast new areas of thought in the late 1920's, and by the middle of the century various workers had reported the sterilization by X-rays or gamma rays of at least a dozen species of insects.

But these were laboratory experiments, still a long way from practical application. About 1950, Dr. Knipling launched a serious effort to turn insect sterilization into a weapon that would wipe out a major insect enemy of livestock in the South, the screw-worm fly. The females of this species lay their eggs in any open wound of a warm-blooded animal. The hatching larvae are parasitic, feeding on the flesh of the host. A full-grown steer may succumb to a heavy infestation in 10 days, and livestock losses in the United States have been estimated at $40,000,000 a year. The toll of wildlife is harder to measure, but it must be great. Scarcity of deer in some areas of Texas is attributed to the screw-worm. This is a tropical or subtropical insect, inhabiting South and Central America and Mexico, and in the United States normally restricted to the Southwest. About 1933, however, it was accidentally introduced into Florida, where the climate allowed it to survive over winter and to establish populations. It even pushed into southern Alabama and Georgia, and soon the livestock industry of the southeastern states was faced with annual losses running to $20,000,000.

A vast amount of information on the biology of the screw-worm had been accumulated over the years by Agriculture Department scientists in Texas. By 1954, after some preliminary field trials on Florida islands, Dr. Knipling was ready for a full-scale test of his theory. For this, by arrangement with the Dutch Government, he went to the island of Curaçao in the Caribbean, cut off from the mainland by at least 50 miles of sea.

Other books

Lion of Macedon by David Gemmell
Sabrina's Man by Gilbert Morris
The RX Factor by John Shaw
The Book of Love by Kathleen McGowan
Stranded With a Billionaire by Clare, Jessica
Peeper by Loren D. Estleman
Flick by Tarttelin,Abigail
1 Life 2 Die 4 by Dean Waite