The Elegant Universe (23 page)

Read The Elegant Universe Online

Authors: Brian Greene

BOOK: The Elegant Universe
10.58Mb size Format: txt, pdf, ePub

The lesson taught by this little competition is clear: Useful probe particles cannot be substantially larger than the physical features being examined; otherwise, they will be insensitive to the structures of interest.

The same reasoning holds, of course, if one wants to probe the pit even more deeply to determine its atomic and subatomic structure. Half-millimeter pellets will not provide any useful information; they are clearly too big to have any sensitivity to structure on atomic scales. This is why particle accelerators use protons or electrons as probes, since their small size makes them much better suited to the task. On subatomic scales, where quantum concepts replace classical reasoning, the most appropriate measure of a particle’s probing sensitivity is its quantum wavelength, which indicates the window of uncertainty in its position. This fact reflects our discussion of Heisenberg’s uncertainty principle in Chapter 4, in which we found that the margin of error incurred when using a point particle as a probe (we focused on photon probes but the discussion applies to all other particles) is about equal to the probe particle’s quantum wavelength. In somewhat looser language, the probing sensitivity of a point particle is smeared out by the jitteriness of quantum mechanics, in much the same way that the precision of a surgeon’s scalpel is compromised if he or she has hands that shake. But recall that in Chapter 4 we also noted the important fact that a particle’s quantum wavelength is inversely proportional to its momentum, which, roughly speaking, is its energy. And so, by increasing a point particle’s energy, its quantum wavelength can be made shorter and shorter—quantum smearing can be decreased further and further—and hence we can use it to probe ever finer physical structures. Intuitively, higher-energy particles have greater penetrating power and are therefore able to probe more minute features.

In this regard, the distinction between point particles and strands of string becomes manifest. Just as was the case for plastic pellets probing the surface features of a peach pit, the string’s inherent spatial extent prevents it from probing the structure of anything substantially smaller than its own size—in this case structures arising on length scales shorter than the Planck length. Somewhat more precisely, in 1988 David Gross, then of Princeton University, and his student Paul Mende showed that when quantum mechanics is taken into account, continually increasing the energy of a string does not continually increase its ability to probe finer structures, in direct contrast with what happens for a point particle. They found that when the energy of a string is increased, it is at first able to probe shorter-scale structures, just like an energetic point particle. But when its energy is increased beyond the value required for probing structures on the scale of the Planck length, the additional energy does not sharpen the string probe. Rather, the energy causes the string to grow in size, thereby diminishing its short-distance sensitivity. In fact, although the size of a typical string is the Planck length, if we pumped enough energy into a string—an amount of energy beyond our wildest imaginings but one that would likely have been attained by the big bang—we could cause it to grow to a macroscopic size, a clumsy probe of the microcosmos indeed! It’s as if a string, unlike a point particle, has two sources of smearing: quantum jitters, as for a point particle, and also its own inherent spatial extent. Increasing a string’s energy decreases the smearing from the first source but ultimately increases the smearing from the second. The upshot is that no matter how hard you try, the extended nature of a string prevents you from using it to probe phenomena on sub-Planck-length distances.

But the whole conflict between general relativity and quantum mechanics arises from the sub-Planck-length properties of the spatial fabric. If the elementary constituent of the universe cannot probe sub-Planck-scale distances, then neither it nor anything made from it can be affected by the supposedly disastrous short-distance quantum undulations. This is similar to what happens as we draw our hand across a highly polished granite surface. Although at a microscopic level the granite is discrete, grainy, and bumpy, our fingers are unable to detect these short-scale variations and the surface feels perfectly smooth. Our stumpy, extended fingers “smear” out the microscopic discreteness. Similarly, since the string has spatial extent, it also has limits on its short-distance sensitivity. It cannot detect variations on sub-Planck-distance scales. Like our fingers on granite, the string smears out the jittery ultramicroscopic fluctuations of the gravitational field. Although the resulting fluctuations are still substantial, this smearing smooths them out just enough to cure the incompatibility between general relativity and quantum mechanics. And, in particular, the pernicious infinities (discussed in the preceding chapter) that arise in the point-particle approach to forming a quantum theory of gravity are done away with by string theory.

An essential difference between the granite analogy and our real concern with the spatial fabric is that there are ways in which the microscopic discreteness of the granite’s surface can be exposed: Finer, more precise probes than our fingers can be used. An electron microscope has the ability to resolve surface features to less than a millionth of a centimeter; this is sufficiently small to reveal the numerous surface imperfections. By contrast, in string theory there is no way to expose the sub-Planck-scale “imperfections” in the fabric of space. In a universe governed by the laws of string theory, the conventional notion that we can always dissect nature on ever smaller distances, without limit, is not true. There is a limit, and it comes into play before we encounter the devastating quantum foam of Figure 5.1. Therefore, in a sense that will be made more precise in later chapters, one can even say that the supposed tempestuous sub-Planckian quantum undulations do not exist. A positivist would say that something exists only if it can—at least in principle—be probed and measured. Since the string is supposed to be the most elementary object in the universe and since it is too large to be affected by the violent sub-Planck-length undulations of the spatial fabric, these fluctuations cannot be measured and hence, according to string theory, do not actually arise.

A Sleight of Hand?

This discussion may leave you feeling dissatisfied. Instead of showing that string theory tames the sub-Planck-length quantum undulations of space, we seem to have used the string’s nonzero size to skirt the whole issue completely. Have we actually solved anything? We have. The following two points will serve to emphasize this.

First, what the preceding argument implies is that the supposedly problematic sub-Planck-length spatial fluctuations are an artifact of formulating general relativity and quantum mechanics in a point-particle framework. In a sense, therefore, the central conflict of contemporary theoretical physics has been a problem of our own making. Because we previously envisioned all matter particles and all force particles to be pointlike objects with literally no spatial extent, we were obligated to consider properties of the universe on arbitrarily short distance scales. And on the tiniest of distances we ran into seemingly insurmountable problems. String theory tells us that we encountered these problems only because we did not understand the true rules of the game; the new rules tell us that there is a limit to how finely we can probe the universe—and, in a real sense, a limit to how finely our conventional notion of distance can even be applied to the ultramicroscopic structure of the cosmos. The supposed pernicious spatial fluctuations are now seen to have arisen in our theories because we were unaware of these limits and were thus led by a point-particle approach to grossly overstep the bounds of physical reality.

Given the apparent simplicity of this solution for overcoming the problem between general relativity and quantum mechanics, you might wonder why it took so long for someone to suggest that the point-particle description is merely an idealization and that in the real world elementary particles do have some spatial extent. This takes us to our second point. Long ago, some of the greatest minds in theoretical physics, such as Pauli, Heisenberg, Dirac, and Feynman, did suggest that nature’s constituents might not actually be points but rather small undulating “blobs” or “nuggets.” They and others found, however, that it is very hard to construct a theory, whose fundamental constituent is not a point particle, that is nonetheless consistent with the most basic of physical principles such as conservation of quantum-mechanical probability (so that physical objects do not suddenly vanish from the universe, without a trace) and the impossibility of faster-than-light-speed transmission of information. From a variety of perspectives, their research showed time and again that one or both of these principles were violated when the point-particle paradigm was discarded. For a long time, therefore, it seemed impossible to find a sensible quantum theory based on anything but point particles. The truly impressive feature of string theory is that more than twenty years of exacting research has shown that although certain features are unfamiliar, string theory does respect all of the requisite properties inherent in any sensible physical theory. And furthermore, through its graviton pattern of vibration, string theory is a quantum theory containing gravity.

The More Precise Answer

The rough answer captures the essence of why string theory prevails where previous point-particle theories failed. And so, if you like, you can go on to the next section without losing the logical flow of our discussion. But having developed the essential ideas of special relativity in Chapter 2, we already have the necessary tools for describing more accurately how string theory calms the violent quantum jitters.

In the more precise answer, we rely upon the same core idea as in the rough answer, but we express it directly at the level of strings. We do this by comparing, in some detail, point-particle and string probes. We will see how the extended nature of the string smears out the information that would be obtainable by point-particle probes, and therefore, again, how it happily does away with the ultra-short-distance behavior responsible for the central dilemma of contemporary physics.

We first consider the way in which point particles would interact, if they were actually to exist, and hence how they could be used as physical probes. The most basic interaction is between two point particles moving on a collision course so that their trajectories will intersect, as in Figure 6.5. If these particles were billiard balls they would collide, and each would be deflected onto a new trajectory. Point-particle quantum field theory shows that essentially the same thing happens when elementary particles collide—they scatter off one another and continue on deflected trajectories—but the details are a little different.

For concreteness and simplicity, imagine that one of the two particles is an electron and the other is its antiparticle, the positron. When matter and antimatter collide, they can. annihilate in a flash of pure energy, producing, for example, a photon.9 To distinguish the ensuing trajectory of the photon from the previous trajectories of the electron and positron, we follow a traditional physics convention and draw it with a wiggly line. The photon will typically travel for a bit and then release the energy derived from the initial electron-positron pair by producing another electron-positron pair with trajectories as indicated on the far right of Figure 6.6. In the end, two particles are fired at each other, they interact through the electromagnetic force, and finally they emerge on deflected trajectories, a sequence of events that bears some similarity to our description of colliding billiard balls.

We are concerned with the details of the interaction—specifically, the point where the initial electron and positron annihilate and produce the photon. The central fact, as will become apparent, is that there is an unambiguous, completely identifiable time and place where this happens: It is marked in Figure 6.6.

How does this description change if, when we closely examine the objects we thought were zero-dimensional points, they turn out to be one-dimensional strings? The basic process of interaction is the same, but now the objects on a collision course are oscillating loops, as shown in Figure 6.7. If these loops are vibrating in just the right resonance patterns, they will correspond to an electron and a positron on collision course, just as in Figure 6.6. Only when examined at the most minute distance scales, far smaller than anything our present technology can access, is their true stringlike character apparent. As in the point-particle case, the two strings collide and again annihilate each other in a flash. The flash, a photon, is itself a string in a particular vibrational pattern. Thus, the two incoming strings interact by merging together and producing a third string, as shown in Figure 6.7. Just as in our point-particle description, this string travels a bit, and then releases the energy derived from the two initial strings by dissociating into two strings that travel onward. Again, from any but the most microscopic perspective, this will look just like the point-particle interaction of Figure 6.6.

There is, however, a crucial difference between the two descriptions. We emphasized that the point-particle interaction occurs at an identifiable point in space and time, a location that all observers can agree on. As we shall now see, this is not true for interactions between strings. We will show this by comparing how George and Gracie, two observers in relative motion as in Chapter 2, would describe the interaction. We will see that they do not agree on where and when the two strings touch for the first time.

To do so, imagine that we view the interaction between two strings with a camera whose shutter is kept open so that the whole history of the process is captured on one piece of film.10 We show the result—known as a string world-sheet—in Figure 6.7(c). By “slicing” the world-sheet into parallel pieces—much as one slices a loaf of bread—the moment-by-moment history of the string interaction can be recovered. We show an example of this slicing in Figure 6.8. Specifically, in Figure 6.8(a) we show George, intently focused on the two incoming strings, together with an attached plane that slices through all events in space that occur at the same time, according to his perspective. As we have done often in previous chapters, we have suppressed one spatial dimension in this diagram for visual clarity. In reality, of course, there is a three-dimensional array of events that occur at the same time according to any observer. Figures 6.8(b) and 6.8(c) give a couple of snapshots at subsequent times—subsequent “slices” of the world-sheet—showing how George sees the two strings approach each other. Of central importance, in Figure 6.8(c) we show the instant in time, according to George, when the two strings first touch and merge together, producing the third string.

Other books

The Last Customer by Daniel Coughlin
Highlights to Heaven by Nancy J. Cohen
The Moses Stone by James Becker
The Great Depression by Pierre Berton
Divine Madness by Melanie Jackson
Tooth and Claw by T. C. Boyle
Servant of a Dark God by John Brown
Jane and the Damned by Janet Mullany