Read The Field Online

Authors: Lynne McTaggart

The Field (9 page)

BOOK: The Field
9.8Mb size Format: txt, pdf, ePub
ads

This was where Popp made his logical leap. Nature was too perfect for this to be simple coincidence. If the carcinogens only react to this wavelength, it must somehow be linked to photo-repair. If so, this would mean that there must be some light in the body responsible for photo-repair. A cancerous compound must cause cancer because it permanently blocks this light and scrambles it, so photo-repair can’t work anymore.

Popp was profoundly taken aback by the thought of it all. He decided there and then that this was where his future work would lie. He wrote the paper up, but told few people about it, and was pleased, but not really surprised, when a prestigious journal on cancer agreed to publish it.
1
In the months before his paper was published, Popp was highly impatient, worried that his idea would be stolen. Any careless disclosure of his to the casual observer might send the listener off to patent Popp’s discovery. As soon as the scientific community realized he had discovered a cure for cancer, he would be one of the most celebrated scientists of his day. It was his first foray into a new area of science, and it was going to land him the Nobel prize.

Popp, after all, was used to accolades. Up until that point he’d won nearly every prize you could be awarded in academic life. He’d even picked up the Röntgen prize for his undergraduate diploma work, which consisted of building a small particle accelerator. This prize, named after Popp’s hero, Wilhelm Röntgen, is given each year to the top undergraduate in physics at the University of Würzburg. Popp had studied like a young man possessed. He’d finished his examinations far earlier than the other students. He was awarded his PhD in theoretical physics in record time. The postgraduate work required for German professorships, a five-year proposition for most academics, took Popp just a little more than two years. At the time of his discovery, Popp was already celebrated among his peers for being a whiz kid, not only because of his ability but also because of his dashing, youthful looks.

When his paper was published, Popp was 33 and good-looking, with the set jaw and direct steel-blue gaze of a Hollywood swashbuckler and a boyish face always assumed to be years younger. Even his wife, who was seven years younger than him, was often mistaken as the senior partner. And indeed, there was something of the swashbuckler about him; he had a reputation among his fellow students as the best fencer on campus – a reputation which had been tested in various duels, one of which had left him with a gash all along the left side of his head.

Popp’s looks and manner belied his seriousness of purpose. Like Edgar Mitchell, he was a philosopher as much as a scientist. Even as a tiny child he’d been trying to make sense of the world, to find some general solution he could apply to everything in his life. He’d even planned to study philosophy until a teacher persuaded him that physics might be a more fertile territory if he required some single equation that held the key to life. Nevertheless, classical physics, with its assertion of reality as a phenomenon independent of the observer, had left him profoundly suspicious. Popp had read Kant and believed, like the philosopher, that reality was the creation of living systems. The observer must be central to the creation of his world.

Popp was celebrated for his paper. The Deutsche Krebsforschungszentrum (German Cancer Research Center) in Heidelberg invited him to speak before fifteen of the world’s leading cancer specialists during an eight-day conference on all aspects of cancer. The invitation to speak among such exclusive company was an incredible opportunity, and it increased his prestige on his university campus. He arrived in a brand new suit, the most elegant presence at the colloquium, but he was the poorest speaker, struggling with his English to make his voice heard.

In his presentation as well as his paper, Popp’s science was unassailable, save for one detail: it assumed that a weak light of 380 nanometres was somehow being produced in the body. To the cancer researchers, this one detail was some kind of a joke. Don’t you think if there were light in the body, they told him, somebody, somewhere would have noticed it by now?

Only a single researcher, a photochemist from the Madame Curie Institute, working on the carcinogenic activity of molecules, was convinced that Popp was right. She invited Popp to work with her in Paris, but would herself die of cancer before he could join her.

The cancer researchers challenged Popp to come up with evidence, and he was ready with a counter challenge. If they would help him build the right equipment, then he would show them where the light was coming from.

Not long after, Popp was approached by a student named Bernhard Ruth, who asked Popp to supervise his work for his PhD dissertation.

‘Sure,’ said Popp, ‘if you can show that there is light in the body.’

Ruth thought it a ridiculous suggestion. Of course, there isn’t light in the body.

‘Okay,’ said Popp. ‘So show me evidence that there isn’t light, and you can get your PhD.’

This meeting was fortuitous for Popp because Ruth happened to be an excellent experimental physicist. He set to work building equipment which would demonstrate, once and for all, that no light was emanating from the body. Within two years he’d produced a machine resembling a big X-ray detector (EMI 9558QA selected typed), which employed a photomultiplier, enabling it to count light, photon by photon. To this day it is still one of the best pieces of equipment in the field. The machine had to be highly sensitive because it would be measuring what Popp assumed would be extremely weak emissions.

In 1976, they were ready for their first test. They’d grown cucumber seedlings, which are among the easiest of plants to cultivate, and put them in the machine. The photomultiplier picked up that photons, or light waves, of a surprisingly high intensity were being emitted from the seedlings. Ruth was highly sceptical. This had something to do with chlorophyll, he argued – a position Popp shared. They decided that with their next test – some potatoes – they would grow the seedling plants in the dark, so they could not undergo photosynthesis. Nevertheless, when placed in the photomultiplier, these potatoes registered an even higher intensity of light.
2
It was impossible that the effect had anything to do with photosynthesis, Popp realized. What’s more, these photons in the living systems he’d examined were more coherent than anything he’d ever seen.

In quantum physics, quantum coherence means that subatomic particles are able to cooperate. These subatomic waves or particles not only know about each other, but also are highly interlinked by bands of common electromagnetic fields, so that they can communicate together. They are like a multitude of tuning forks that all begin resonating together. As the waves get into phase or synch, they begin acting like one giant wave and one giant subatomic particle. It becomes difficult to tell them apart. Many of the weird quantum effects seen in a single wave apply to the whole. Something done to one of them will affect the others.

Coherence establishes communication. It’s like a subatomic telephone network. The better the coherence, the finer the telephone network and the more refined wave patterns have a telephone. The end result is also a bit like a large orchestra. All the photons are playing together but as individual instruments that are able to carry on playing individual parts. Nevertheless, when you are listening, it’s difficult to pick out any one instrument.

What was even more amazing was that Popp was witnessing the highest level of quantum order, or coherence, possible in a living system. Usually, this coherence – called a Bose – Einstein condensate – is only observed in material substances such as superfluids or superconductors studied in the laboratory in very cold places – just a few degrees above absolute zero – and not in the hot and messy environment of a living thing.

Popp began thinking about light in nature. Light, of course, was present in plants, the source of energy used during photosynthesis. When we eat plant foods, it must be, he thought, that we take up the photons and store them. Say that we consume some broccoli. When we digest it, it is metabolized into carbon dioxide (CO2) and water, plus the light stored from the sun and present in photosynthesis. We extract the CO2 and eliminate the water, but the light, an electromagnetic wave, must get stored. When taken in by the body, the energy of these photons dissipates so that it is eventually distributed over the entire spectrum of electromagnetic frequencies, from the lowest to the highest. This energy becomes the driving force for all the molecules in our body.

Photons switch on the body’s processes like a conductor launching each individual instrument into the collective sound. At different frequencies they perform different functions. Popp found with experimentation that molecules in the cells would respond to certain frequencies and that a range of vibrations from the photons would cause a variety of frequencies in other molecules of the body. Light waves also answered the question of how the body could manage complicated feats with different body parts instantaneously or do two or more things at once. These ‘biophoton emissions’, as he was beginning to call them, could provide a perfect communication system, to transfer information to many cells across the organism. But the single most important question remained: where were they coming from?

A particularly gifted student of his talked him into trying an experiment. It is known that when you apply a chemical called ethidium bromide to samples of DNA, the chemical squeezes itself into the middle of the base pairs of the double helix and causes it to unwind. The student suggested that, after applying the chemical, he and Popp try measuring the light coming off the sample. Popp discovered that the more he increased the concentration of the chemical, the more the DNA unwound, but also the stronger the intensity of light. The less he put in, the lower the light emission.
3
He also found that DNA was capable of sending out a large range of frequencies and that some frequencies seemed linked to certain functions. If DNA were storing this light, it would naturally emit more light once it was unwound.

These and other studies demonstrated to Popp that one of the most essential stores of light and sources of biophoton emissions was DNA. DNA must be like the master tuning fork in the body. It would strike a particular frequency and certain other molecules would follow. It was altogether possible, he realized, that he might have stumbled upon the missing link in current DNA theory that could account for perhaps the greatest miracle of all in human biology: the means by which a single cell turns into a fully formed human being.

One of the greatest mysteries of biology is how we and every other living thing take geometric shape. Modern scientists mostly understand how we have blue eyes or grow to six foot one, and even how cells divide. What is far more elusive is the manner by which these cells know exactly where to place themselves in each stage of the building process, so that an arm becomes an arm rather than a leg, as well as the very mechanism which gets these cells to organize and assemble themselves together into something resembling a three-dimensional human form.

The usual scientific explanation has to do with the chemical interactions between molecules and with DNA, the coiled double helix of genetic coding that holds a blueprint of the body’s protein and amino acids. Each DNA helix or chromosome – and the identical twenty-six pairs exist in every one of the thousand million million cells in your body
4
– contains a long chain of nucleotides, or bases, of four different components (shortened to ATCG) arranged in a unique order in every human body. The most favored idea is that there exists a genetic ‘program’ of genes operating collectively to determine shape, or, in the view of neo-Darwinists such as Richard Dawkins, that ruthless genes, like Chicago thugs, have powers to create form and that we are ‘survival machines’ – robot vehicles blindly programmed to preserve the selfish molecules known as genes.
5

This theory promotes DNA as the Renaissance man of the human body – architect, master builder and central engine room – whose tool for all this amazing activity is a handful of the chemicals which make proteins. The modern scientific view is that DNA somehow manages to build the body and spearhead all its dynamic activities just by selectively turning off and on certain segments, or genes, whose nucleotides, or genetic instructions, select certain RNA molecules, which in turn select from a large alphabet of amino acids the genetic ‘words’ which create specific proteins. These proteins supposedly are able to both build the body and to switch on and off all the chemical processes inside the cell which ultimately control the running of the body.

Undoubtedly proteins do play a major role in bodily function. Where the Darwinists fall short is in explaining exactly how DNA knows when to orchestrate this and also how these chemicals, all blindly bumping into each other, can operate more or less simultaneously. Each cell undergoes, on average, some 100,000 chemical reactions per second – a process that repeats itself simultaneously across every cell in the body. At any given second, billions of chemical reactions of one sort or another occur. Timing must be exquisite, for if any one of the individual chemical processes in all the millions of cells in the body is off by a fraction, humans would blow themselves up in a matter of seconds. But what the rank and file among geneticists have not addressed is that if DNA is the control room, what is the feedback mechanism which enables it to synchronize the activities of individual genes and cells to carry out systems in unison? What is the chemical or genetic process that tells certain cells to grow into a hand and not a foot? And which cell processes happen at which time?

If all these genes are working together like some unimaginably big orchestra, who or what is the conductor? And if all these processes are due to simple chemical collision between molecules, how can it work anywhere near rapidly enough to account for the coherent behaviours that live beings exhibit every minute of their lives?

BOOK: The Field
9.8Mb size Format: txt, pdf, ePub
ads

Other books

The Ancient Alien Question by Philip Coppens
Now You See Her by Joy Fielding
It's a Mall World After All by Janette Rallison
Majoring In Murder by Jessica Fletcher