The Notebooks of Leonardo Da Vinci (7 page)

Read The Notebooks of Leonardo Da Vinci Online

Authors: Leonardo Da Vinci

Tags: #History, #General, #Leonardo, #da Vinci, #1452-1519 -- Notebooks, #sketchbooks, #Etc.

BOOK: The Notebooks of Leonardo Da Vinci
3.72Mb size Format: txt, pdf, ePub

66.

The images of objects are all diffused through the atmosphere which
receives them; and all on every side in it. To prove this, let
a c
e
be objects of which the images are admitted to a dark chamber by
the small holes
n p
and thrown upon the plane
f i
opposite to
these holes. As many images will be produced in the chamber on the
plane as the number of the said holes.

67.

General conclusions.

All objects project their whole image and likeness, diffused and
mingled in the whole of the atmosphere, opposite to themselves. The
image of every point of the bodily surface, exists in every part of
the atmosphere. All the images of the objects are in every part of
the atmosphere. The whole, and each part of the image of the
atmosphere is [reflected] in each point of the surface of the bodies
presented to it. Therefore both the part and the whole of the images
of the objects exist, both in the whole and in the parts of the
surface of these visible bodies. Whence we may evidently say that
the image of each object exists, as a whole and in every part, in
each part and in the whole interchangeably in every existing body.
As is seen in two mirrors placed opposite to each other.

68.

That the contrary is impossible.

It is impossible that the eye should project from itself, by visual
rays, the visual virtue, since, as soon as it opens, that front
portion [of the eye] which would give rise to this emanation would
have to go forth to the object and this it could not do without
time. And this being so, it could not travel so high as the sun in a
month's time when the eye wanted to see it. And if it could reach
the sun it would necessarily follow that it should perpetually
remain in a continuous line from the eye to the sun and should
always diverge in such a way as to form between the sun and the eye
the base and the apex of a pyramid. This being the case, if the eye
consisted of a million worlds, it would not prevent its being
consumed in the projection of its virtue; and if this virtue would
have to travel through the air as perfumes do, the winds would bent
it and carry it into another place. But we do [in fact] see the mass
of the sun with the same rapidity as [an object] at the distance of
a braccio, and the power of sight is not disturbed by the blowing of
the winds nor by any other accident.

[Footnote: The view here refuted by Leonardo was maintained among
others by Bramantino, Leonardo's Milanese contemporary. LOMAZZO
writes as follows in his Trattato dell' Arte della pittura &c.
(Milano 1584. Libr. V cp. XXI): Sovviemmi di aver gi� letto in certi
scritti alcune cose di Bramantino milanese, celebratissimo pittore,
attenente alla prospettiva, le quali ho voluto riferire, e quasi
intessere in questo luogo, affinch� sappiamo qual fosse l'opinione
di cosi chiaro e famoso pittore intorno alla prospettiva . . Scrive
Bramantino che la prospettiva � una cosa che contraf� il naturale, e
che ci� si fa in tre modi

Circa il primo modo che si fa con ragione, per essere la cosa in
poche parole conclusa da Bramantino in maniera che giudico non
potersi dir meglio, contenendovi si tutta Parte del principio al
fine, io riferir� per appunto le proprie parole sue (cp. XXII, Prima
prospettiva di Bramantino). La prima prospettiva fa le cose di
punto, e l'altra non mai, e la terza pi� appresso. Adunque la prima
si dimanda prospettiva, cio� ragione, la quale fa l'effetto dell'
occhio, facendo crescere e calare secondo gli effetti degli occhi.
Questo crescere e calare non procede della cosa propria, che in se
per esser lontana, ovvero vicina, per quello effetto non pu�
crescere e sminuire, ma procede dagli effetti degli occhi, i quali
sono piccioli, e perci� volendo vedere tanto gran cosa_, bisogna che
mandino fuora la virt� visiva,
la quale si dilata in tanta
larghezza, che piglia tutto quello che vuoi vedere, ed
arrivando a
quella cosa la vede dove �:
e da lei agli occhi per quello circuito
fino all' occhio, e tutto quello termine � pieno di quella cosa
.

It is worthy of note that Leonardo had made his memorandum refuting
this view, at Milan in 1492]

69.

A parallel case.

Just as a stone flung into the water becomes the centre and cause of
many circles, and as sound diffuses itself in circles in the air: so
any object, placed in the luminous atmosphere, diffuses itself in
circles, and fills the surrounding air with infinite images of
itself. And is repeated, the whole every-where, and the whole in
every smallest part. This can be proved by experiment, since if you
shut a window that faces west and make a hole [Footnote: 6. Here the
text breaks off.] . .

[Footnote: Compare LIBRI,
Histoire des sciences math�matiques en
Italie
. Tome III, p. 43.]

The function of the eye as explained by the camera obscura (70. 71).

70.

If the object in front of the eye sends its image to the eye, the
eye, on the other hand, sends its image to the object, and no
portion whatever of the object is lost in the images it throws off,
for any reason either in the eye or the object. Therefore we may
rather believe it to be the nature and potency of our luminous
atmosphere which absorbs the images of the objects existing in it,
than the nature of the objects, to send their images through the
air. If the object opposite to the eye were to send its image to the
eye, the eye would have to do the same to the object, whence it
might seem that these images were an emanation. But, if so, it would
be necessary [to admit] that every object became rapidly smaller;
because each object appears by its images in the surrounding
atmosphere. That is: the whole object in the whole atmosphere, and
in each part; and all the objects in the whole atmosphere and all of
them in each part; speaking of that atmosphere which is able to
contain in itself the straight and radiating lines of the images
projected by the objects. From this it seems necessary to admit that
it is in the nature of the atmosphere, which subsists between the
objects, and which attracts the images of things to itself like a
loadstone, being placed between them.

PROVE HOW ALL OBJECTS, PLACED IN ONE POSITION, ARE ALL EVERYWHERE
AND ALL IN EACH PART.

I say that if the front of a building—or any open piazza or
field—which is illuminated by the sun has a dwelling opposite to
it, and if, in the front which does not face the sun, you make a
small round hole, all the illuminated objects will project their
images through that hole and be visible inside the dwelling on the
opposite wall which may be made white; and there, in fact, they will
be upside down, and if you make similar openings in several places
in the same wall you will have the same result from each. Hence the
images of the illuminated objects are all everywhere on this wall
and all in each minutest part of it. The reason, as we clearly know,
is that this hole must admit some light to the said dwelling, and
the light admitted by it is derived from one or many luminous
bodies. If these bodies are of various colours and shapes the rays
forming the images are of various colours and shapes, and so will
the representations be on the wall.

[Footnote: 70. 15—23. This section has already been published in the
"
Saggio delle Opere di Leonardo da Vinci
" Milan 1872, pp. 13, 14.
G. Govi observes upon it, that Leonardo is not to be regarded as the
inventor of the Camera obscura, but that he was the first to explain
by it the structure of the eye. An account of the Camera obscura
first occurs in CESARE CESARINI's Italian version of Vitruvius, pub.
1523, four years after Leonardo's death. Cesarini expressly names
Benedettino Don Papnutio as the inventor of the Camera obscura. In
his explanation of the function of the eye by a comparison with the
Camera obscura Leonardo was the precursor of G. CARDANO, Professor
of Medicine at Bologna (died 1576) and it appears highly probable
that this is, in fact, the very discovery which Leonardo ascribes to
himself in section 21 without giving any further details.]

71.

HOW THE IMAGES OF OBJECTS RECEIVED BY THE EYE INTERSECT WITHIN THE
CRYSTALLINE HUMOUR OF THE EYE.

An experiment, showing how objects transmit their images or
pictures, intersecting within the eye in the crystalline humour, is
seen when by some small round hole penetrate the images of
illuminated objects into a very dark chamber. Then, receive these
images on a white paper placed within this dark room and rather near
to the hole and you will see all the objects on the paper in their
proper forms and colours, but much smaller; and they will be upside
down by reason of that very intersection. These images being
transmitted from a place illuminated by the sun will seem actually
painted on this paper which must be extremely thin and looked at
from behind. And let the little perforation be made in a very thin
plate of iron. Let
a b e d e
be the object illuminated by the sun
and
o r
the front of the dark chamber in which is the said hole at
n m
. Let
s t
be the sheet of paper intercepting the rays of the
images of these objects upside down, because the rays being
straight,
a
on the right hand becomes
k
on the left, and
e
on
the left becomes
f
on the right; and the same takes place inside
the pupil.

[Footnote: This chapter is already known through a translation into
French by VENTURI. Compare his '
Essai sur les ouvrages
physico-math�matiques de L. da Vinci avec des fragments tir�s de ses
Manuscrits, apport�s de l'Italie. Lu a la premiere classe de
l'Institut national des Sciences et Arts.' Paris, An V
(1797).]

The practice of perspective (72. 73).

72.

In the practice of perspective the same rules apply to light and to
the eye.

73.

The object which is opposite to the pupil of the eye is seen by that
pupil and that which is opposite to the eye is seen by the pupil.

Refraction of the rays falling upon the eye (74. 75)

74.

The lines sent forth by the image of an object to the eye do not
reach the point within the eye in straight lines.

75.

If the judgment of the eye is situated within it, the straight lines
of the images are refracted on its surface because they pass through
the rarer to the denser medium. If, when you are under water, you
look at objects in the air you will see them out of their true
place; and the same with objects under water seen from the air.

The intersection of the rays (76-82).

76.

The inversion of the images.

All the images of objects which pass through a window [glass pane]
from the free outer air to the air confined within walls, are seen
on the opposite side; and an object which moves in the outer air
from east to west will seem in its shadow, on the wall which is
lighted by this confined air, to have an opposite motion.

77.

THE PRINCIPLE ON WHICH THE IMAGES OF BODIES PASS IN BETWEEN THE
MARGINS OF THE OPENINGS BY WHICH THEY ENTER.

What difference is there in the way in which images pass through
narrow openings and through large openings, or in those which pass
by the sides of shaded bodies? By moving the edges of the opening
through which the images are admitted, the images of immovable
objects are made to move. And this happens, as is shown in the 9th
which demonstrates: [Footnote 11:
per la 9a che dicie
. When
Leonardo refers thus to a number it serves to indicate marginal
diagrams; this can in some instances be distinctly proved. The ninth
sketch on the page W. L. 145 b corresponds to the middle sketch of
the three reproduced.] the images of any object are all everywhere,
and all in each part of the surrounding air. It follows that if one
of the edges of the hole by which the images are admitted to a dark
chamber is moved it cuts off those rays of the image that were in
contact with it and gets nearer to other rays which previously were
remote from it &c.

OF THE MOVEMENT OF THE EDGE AT THE RIGHT OR LEFT, OR THE UPPER, OR
LOWER EDGE.

If you move the right side of the opening the image on the left will
move [being that] of the object which entered on the right side of
the opening; and the same result will happen with all the other
sides of the opening. This can be proved by the 2nd of this which
shows: all the rays which convey the images of objects through the
air are straight lines. Hence, if the images of very large bodies
have to pass through very small holes, and beyond these holes
recover their large size, the lines must necessarily intersect.

[Footnote: 77. 2. In the first of the three diagrams Leonardo had
drawn only one of the two margins, et
m
.]

78.

Necessity has provided that all the images of objects in front of
the eye shall intersect in two places. One of these intersections is
in the pupil, the other in the crystalline lens; and if this were
not the case the eye could not see so great a number of objects as
it does. This can be proved, since all the lines which intersect do
so in a point. Because nothing is seen of objects excepting their
surface; and their edges are lines, in contradistinction to the
definition of a surface. And each minute part of a line is equal to
a point; for
smallest
is said of that than which nothing can be
smaller, and this definition is equivalent to the definition of the
point. Hence it is possible for the whole circumference of a circle
to transmit its image to the point of intersection, as is shown in
the 4th of this which shows: all the smallest parts of the images
cross each other without interfering with each other. These
demonstrations are to illustrate the eye. No image, even of the
smallest object, enters the eye without being turned upside down;
but as it penetrates into the crystalline lens it is once more
reversed and thus the image is restored to the same position within
the eye as that of the object outside the eye.

Other books

Cry of Eagles by William W. Johnstone
Prowlers: Wild Things by Christopher Golden
Vivian's List (Vol. 1) by Lovell, Haleigh
Star Sullivan by Binchy, Maeve
The Amazing Harvey by Don Passman