The Selfish Gene (6 page)

Read The Selfish Gene Online

Authors: Richard Dawkins

BOOK: The Selfish Gene
3.54Mb size Format: txt, pdf, ePub

 

I am using the word gene to mean a genetic unit that is small enough to last for a large number of generations and to be distributed around in the form of many copies. This is not a rigid all-or-nothing definition, but a kind of fading-out definition, like the definition of 'big' or 'old'. The more likely a length of chromosome is to be split by crossing-over, or altered by mutations of various kinds, the less it qualifies to be called a gene in the sense in which I am using the term. A cistron presumably qualifies, but so also do larger units. A dozen cistrons may be so close to each other on a chromosome that for our purposes they constitute a single long-lived genetic unit. The butterfly mimicry cluster is a good example. As the cistrons leave one body and enter the next, as they board sperm or egg for the journey into the next generation, they are likely to find that the little vessel contains their close neighbours of the previous voyage, old shipmates with whom they sailed on the long odyssey from the bodies of distant ancestors. Neighbouring cistrons on the same chromosome form a tightly-knit troupe of travelling companions who seldom fail to get on board the same vessel when meiosis time comes around.

 

To be strict, this book should be called not The Selfish Cistron nor The Selfish Chromosome, but The slightly selfish big bit of chromosome and the even more selfish little bit of chromosome. To say the least this is not a catchy tide so, defining a gene as a little bit of chromosome which potentially lasts for many generations, I call the book The Selfish Gene.

 

We have now arrived back at the point we left at the end of Chapter i. There we saw that selfishness is to be expected in any entity that deserves the title of a basic unit of natural selection. We saw that some people regard the species as the unit of natural selection, others the population or group within the species, and yet others the individual. I said that I preferred to think of the gene as the fundamental unit of natural selection, and therefore the fundamental unit of self-interest. What I have now done is to define the gene in such a way that I cannot really help being right!

 

Natural selection in its most general form means the differential survival of entities. Some entities live and others die but, in order for this selective death to have any impact on the world, an additional condition must be met. Each entity must exist in the form of lots of copies, and at least some of the entities must be potentially capable of surviving-in the form of copies-for a significant period of evolutionary time. Small genetic units have these properties: individuals, groups, and species do not. It was the great achievement of Gregor Mendel to show that hereditary units can be treated in practice as indivisible and independent particles. Nowadays we know that this is a little too simple. Even a cistron is occasionally divisible and any two genes on the same chromosome are not wholly independent. What I have done is to define a gene as a unit which, to a high degree, approaches the ideal of indivisible particulateness. A gene is not indivisible, but it is seldom divided. It is either definitely present or definitely absent in the body of any given individual. A gene travels intact from grandparent to grandchild, passing straight through the intermediate generation without being merged with other genes. If genes continually blended with each other, natural selection as we now understand it would be impossible. Incidentally, this was proved in Darwin's lifetime, and it caused Darwin great worry since in those days it was assumed that heredity was a blending process. Mendel's discovery had already been published, and it could have rescued Darwin, but alas he never knew about it: nobody seems to have read it until years after Darwin and Mendel had both died. Mendel perhaps did not realize the significance of his findings, otherwise he might have written to Darwin.

 

Another aspect of the particulateness of the gene is that it does not grow senile; it is no more likely to die when it is a million years old than when it is only a hundred. It leaps from body to body down the generations, manipulating body after body in its own way and for its own ends, abandoning a succession of mortal bodies before they sink in senility and death.

 

The genes are the immortals, or rather, they are defined as genetic entities that come close to deserving the title. We, the individual survival machines in the world, can expect to live a few more decades. But the genes in the world have an expectation of life that must be measured not in decades but in thousands and millions of years.

 

In sexually reproducing species, the individual is too large and too temporary a genetic unit to qualify as a significant unit of natural selection. The group of individuals is an even larger unit. Genetically speaking, individuals and groups are like clouds in the sky or dust-storms in the desert. They are temporary aggregations or federations. They are not stable through evolutionary time. Populations may last a long while, but they are constantly blending with other populations and so losing their identity. They are also subject to evolutionary change from within. A population is not a discrete enough entity to be a unit of natural selection, not stable and unitary enough to be 'selected' in preference to another population.

 

An individual body seems discrete enough while it lasts, but alas, how long is that? Each individual is unique. You cannot get evolution by selecting between entities when there is only one copy of each entity! Sexual reproduction is not replication. Just as a population is contaminated by other populations, so an individual's posterity is contaminated by that of his sexual partner. Your children are only half you, your grandchildren only a quarter you. In a few generations the most you can hope for is a large number of descendants, each of whom bears only a tiny portion of you-a few genes-even if a few do bear your surname as well.

 

Individuals are not stable things, they are fleeting. Chromosomes too are shuffled into oblivion, like hands of cards soon after they are dealt. But the cards themselves survive the shuffling. The cards are the genes. The genes are not destroyed by crossing-over, they merely change partners and march on. Of course they march on. That is their business. They are the replicators and we are their survival machines. When we have served our purpose we are cast aside. But genes are denizens of geological time: genes are forever.

 

Genes, like diamonds, are forever, but not quite in the same way as diamonds. It is an individual diamond crystal that lasts, as an unaltered pattern of atoms. DNA molecules don't have that kind of permanence. The life of any one physical DNA molecule is quite short-perhaps a matter of months, certainly not more than one lifetime. But a DNA molecule could theoretically live on in the form of copies of itself for a hundred million years. Moreover, just like the ancient replicators in the primeval soup, copies of a particular gene may be distributed all over the world. The difference is that the modern versions are all neatly packaged inside the bodies of survival machines.

 

What I am doing is emphasizing the potential near-immortality of a gene, in the form of copies, as its defining property. To define a gene as a single cistron is good for some purposes, but for the purposes of evolutionary theory it needs to be enlarged. The extent of the enlargement is determined by the purpose of the definition. We want to find the practical unit of natural selection. To do this we begin by identifying the properties that a successful unit of natural selection must have. In the terms of the last chapter, these are longevity, fecundity, and copying-fidelity. We then simply define a 'gene' as the largest entity which, at least potentially, has these properties. The gene is a long-lived replicator, existing in the form of many duplicate copies. It is not infinitely long-lived. Even a diamond is not literally everlasting, and even a cistron can be cut in two by crossing-over. The gene is defined as a piece of chromosome which is sufficiently short for it to last, potentially, for long enough for it to function as a significant unit of natural selection.

 

Exactly how long is 'long enough'? There is no hard and fast answer. It will depend on how severe the natural selection 'pressure' is. That is, on how much more likely a 'bad' genetic unit is to die than its 'good' allele. This is a matter of quantitative detail which will vary from example to example. The largest practical unit of natural selection-the gene-will usually be found to lie somewhere on the scale between cistron and chromosome.

 

It is its potential immortality that makes a gene a good candidate as the basic unit of natural selection. But now the time has come to stress the word 'potential'. A gene can live for a million years, but many new genes do not even make it past their first generation. The few new ones that succeed do so partly because they are lucky, but mainly because they have what it takes, and that means they are good at making survival machines. They have an effect on the embryonic development of each successive body in which they find themselves, such that that body is a little bit more likely to live and reproduce than it would have been under the influence of the rival gene or allele. For example, a 'good' gene might ensure its survival by tending to endow the successive bodies in which it finds itself with long legs, which help those bodies to escape from predators. This is a particular example, not a universal one. Long legs, after all, are not always an asset. To a mole they would be a handicap. Rather than bog ourselves down in details, can we think of any universal qualities that we would expect to find in all good (i.e. long-lived) genes? Conversely, what are the properties that instantly mark a gene out as a 'bad', short-lived one? There might be several such universal properties, but there is one that is particularly relevant to this book: at the gene level, altruism must be bad and selfishness good. This follows inexorably from our definitions of altruism and selfishness. Genes are competing directly with their alleles for survival, since their alleles in the gene pool are rivals for their slot on the chromosomes of future generations. Any gene that behaves in such a way as to increase its own survival chances in the gene pool at the expense of its alleles will, by definition, tautologously, tend to survive. The gene is the basic unit of selfishness.

 

The main message of this chapter has now been stated. But I have glossed over some complications and hidden assumptions. The first complication has already been briefly mentioned. However independent and free genes may be in their journey through the generations, they are very much not free and independent agents in their control of embryonic development. They collaborate and interact in inextricably complex ways, both with each other, and with their external environment. Expressions like 'gene for long legs' or 'gene for altruistic behaviour' are convenient figures of speech, but it is important to understand what they mean. There is no gene which single-handedly builds a leg, long or short. Building a leg is a multi-gene cooperative enterprise. Influences from the external environment too are indispensable: after all, legs are actually made of food! But there may well be a single gene which, other things being equal, tends to make legs longer than they would have been under the influence of the gene's allele.

 

As an analogy, think of the influence of a fertilizer, say nitrate, on the growth of wheat. Everybody knows that wheat plants grow bigger in the presence of nitrate than in its absence. But nobody would be so foolish as to claim that, on its own, nitrate can make a wheat plant. Seed, soil, sun, water, and various minerals are obviously all necessary as well. But if all these other factors are held constant, and even if they are allowed to vary within limits, addition of nitrate will make the wheat plants grow bigger. So it is with single genes in the development of an embryo. Embryonic development is controlled by an interlocking web of relationships so complex that we had best not contemplate it. No one factor, genetic or environmental, can be considered as the single 'cause' of any part of a baby. All parts of a baby have a near infinite number of antecedent causes. But a difference between one baby and another, for example a difference in length of leg, might easily be traced to one or a few simple antecedent differences, either in environment or in genes. It is differences that matter in the competitive struggle to survive; and it is genetically-controlled differences that matter in evolution.

 

As far as a gene is concerned, its alleles are its deadly rivals, but other genes are just a part of its environment, comparable to temperature, food, predators, or companions. The effect of the gene depends on its environment, and this includes other genes. Sometimes a gene has one effect in the presence of a particular other gene, and a completely different effect in the presence of another set of companion genes. The whole set of genes in a body constitutes a kind of genetic climate or background, modifying and influencing the effects of any particular gene.

 

But now we seem to have a paradox. If building a baby is such an intricate cooperative venture, and if every gene needs several thousands of fellow genes to complete its task, how can we reconcile this with my picture of indivisible genes, springing like immortal chamois from body to body down the ages: the free, untrammelled, and self-seeking agents of life? Was that all nonsense? Not at all. I may have got a bit carried away with the purple passages, but I was not talking nonsense, and there is no real paradox. We can explain this by means of another analogy.

 

One oarsman on his own cannot win the Oxford and Cambridge boat race. He needs eight colleagues. Each one is a specialist who always sits in a particular part of the boat-bow or stroke or cox etc. Rowing the boat is a cooperative venture, but some men are nevertheless better at it than others. Suppose a coach has to choose his ideal crew from a pool of candidates, some specializing in the bow position, others specializing as cox, and so on. Suppose that he makes his selection as follows. Every day he puts together three new trial crews, by random shuffling of the candidates for each position, and he makes the three crews race against each other. After some weeks of this it will start to emerge that the winning boat often tends to contain the same individual men. These are marked up as good oarsmen. Other individuals seem consistently to be found in slower crews, and these are eventually rejected. But even an outstandingly good oarsman might sometimes be a member of a slow crew, either because of the inferiority of the other members, or because of bad luck-say a strong adverse wind. It is only on average that the best men tend to be in the winning boat.

Other books

Stop at Nothing by Kate SeRine
Lipstick and Lies by Debbie Viggiano
Ocean Prize (1972) by Pattinson, James
Enchantment by Pati Nagle
Vampire Affliction by Eva Pohler