Un punto azul palido (18 page)

Read Un punto azul palido Online

Authors: Carl Sagan

Tags: #Divulgación Científica

BOOK: Un punto azul palido
5.69Mb size Format: txt, pdf, ePub

Cuando el
Voyager 2
atravesó el sistema de Neptuno en 1989, sus cámaras, espectrómetros, detectores de campo y de partículas y demás instrumentos examinaron a un ritmo febril el planeta, sus lunas y también sus anillos. El planeta, al igual que sus primos Júpiter, Saturno y Urano, es un gigante. Todos los planetas son en el fondo mundos similares a la Tierra, pero los cuatro gigantes llevan disfraces muy pesados y elaborados. Júpiter y Saturno son grandes mundos gaseosos con núcleos rocosos y helados relativamente pequeños. Pero Urano y Neptuno son fundamentalmente mundos de roca y hielo envueltos en densas atmósferas que los ocultan a la vista.

Neptuno es cuatro veces mayor que la Tierra. Cuando contemplamos su frío y austero color azul, de nuevo estamos viendo solamente atmósfera y nubes, no superficie sólida. Su atmósfera, una vez más, se compone principalmente de hidrógeno y helio, con una pequeña porción de metano y rastros de otros hidrocarburos. También puede haber algo de nitrógeno. Sus nubes luminosas, que al parecer son cristales de metano, flotan sobre otras más espesas y profundas de composición desconocida. A partir del movimiento de las nubes pudimos descubrir la existencia de feroces vientos, de intensidad cercana a la velocidad local del sonido. También detectamos la presencia de una Gran Mancha Oscura, curiosamente, casi en la misma latitud en que se encuentra la Gran Mancha Roja de Júpiter. El color azul celeste parece apropiado para un planeta que lleva el nombre del dios de los mares.

Alrededor de ese mundo tenuemente iluminado, gélido, tormentoso y remoto, existe —también aquí— un sistema de anillos, cada uno de ellos compuesto de innumerables objetos orbitantes cuyo tamaño oscila entre el de las finas partículas del humo de un cigarrillo y el de un camión pequeño. Al igual que los anillos de los restantes planetas jovianos, los de Neptuno son, aparentemente, evanescentes; se calcula que la gravedad y la radiación solar acabarán por disgregarlos en un periodo de tiempo mucho menor a la edad del sistema solar. Si se destruyen rápidamente, ello significa que podemos verlos gracias a que se formaron recientemente. Pero ¿cómo pueden formarse esos anillos?

La luna más grande en el sistema de Neptuno se llama Tritón
[17]
.

Necesita casi seis días de los nuestros para completar la órbita alrededor de Neptuno, lo cual lleva a cabo —es la única de las grandes lunas del Sistema Solar que lo hace— en la dirección opuesta a la rotación de su planeta (en el sentido de las agujas del reloj si convenimos que Neptuno lo hace en el sentido contrario). Tritón posee una atmósfera rica en nitrógeno, en cierto modo similar a la de Titán; pero, dado que el aire y la niebla son mucho más delgados, podemos vislumbrar su superficie. Sus paisajes son variados y espléndidos. Se trata de un mundo de hielos: hielo de nitrógeno y hielo de metano, probablemente con un fondo de hielo de agua y roca. Se observa la presencia de cuencas de impacto que, al parecer, estuvieron inundadas de líquido antes de congelarse (de modo que en algún momento hubo lagos en Tritón); también presenta cráteres de impacto, valles cruzados en todas direcciones, amplias llanuras cubiertas de nieves de nitrógeno, caídas recientemente, terreno arrugado que se asemeja a la piel de un cantaloupe
[18]
y unas rayas largas, oscuras y más o menos paralelas que parecen haber sido arrastradas por el viento y luego depositadas sobre la superficie helada, a pesar de lo escasa que es la atmósfera de Tritón (aproximadamente 1/10000 del espesor de la atmósfera de la Tierra).

Todos los cráteres de Tritón son prístinos, como si hubieran sido estampados por algún enorme mecanismo de acuñación. No se observan paredes derruidas ni relieves modificados. Incluso con la periódica caída y evaporación de nieves, parece como si nada hubiera erosionado la superficie de Tritón a lo largo de miles de millones de años. Así pues, todos los cráteres que fueron excavados durante la formación de Tritón debieron de rellenarse y quedar cubiertos por algún fenómeno primitivo de reestructuración global de la superficie. Tritón órbita alrededor de Neptuno en la dirección opuesta a la rotación de dicho planeta, a diferencia de lo que sucede con la Tierra y su luna, así como con la mayoría de las grandes lunas del sistema solar. Si Tritón se hubiera formado a partir del mismo disco rotatorio que produjo a Neptuno, debería dar vueltas a su alrededor en la misma dirección de rotación que éste. Así pues, Tritón no se originó en la nebulosa local original alrededor de Neptuno, sino que surgió en alguna otra parte —quizá mucho más allá de Plutón— y fue capturada de forma casual por su gravedad al pasar demasiado cerca de él. Este evento tuvo que levantar enormes mareas de cuerpos sólidos en Tritón, frunciendo su superficie y borrando toda huella de su topografía anterior.

En algunos lugares la superficie es tan blanca y brillante como las nieves antárticas recién caídas (y puede ofrecer una experiencia de esquí sin igual en todo el sistema solar). En otros aparece teñida, presentando matices que van desde el rosa hasta el marrón. Una explicación posible sería la siguiente: nieves recién caídas de nitrógeno, metano y otros hidrocarburos son irradiadas por luz solar ultravioleta y por electrones atrapados en el campo magnético de Neptuno, a través del cual avanza laboriosamente Tritón. Sabemos que semejante irradiación convertiría las nieves (y los gases correspondientes) en sedimentos orgánicos complejos, rojizos y oscuros,
tholin
de hielo, sin indicios de vida, pero también aquí compuesto de algunas de las moléculas implicadas en el origen de la vida en la Tierra, cuatro mil millones de años atrás.

Durante el invierno local, las capas de hielo y nieve van acumulándose sobre la superficie. (Afortunadamente, la duración de nuestros inviernos es, en comparación, tan sólo de un cuatro por ciento.) A lo largo de la primavera sufren una lenta transformación y van acumulándose cada vez más moléculas orgánicas rojizas. Hacia el verano, el hielo y la nieve se han evaporado. Los gases liberados en el proceso emigran a través del planeta hasta el hemisferio de invierno y, una vez allí, cubren de nuevo la superficie de hielo y nieve. Pero las moléculas orgánicas rojizas no se evaporan ni son transportadas, constituyen un depósito rezagado y, al invierno siguiente, son cubiertas por nuevas nieves, que reciben a su vez la radiación, de manera que cada verano la capa de sedimento se hace más gruesa. A medida que pasa el tiempo, cantidades sustanciales de materia orgánica van apilándose sobre la superficie de Tritón, lo cual puede explicar sus delicadas marcas de color.

Las rayas se inician en regiones de origen pequeñas y oscuras, quizá cuando las altas temperaturas primaverales y veraniegas calientan las volátiles nieves subterráneas. Al vaporizarse, el gas sale disparado como en un geiser, arrastrando consigo las nieves y materia orgánica oscura menos volátil de la superficie. Los vientos de intensidad moderada se llevan por delante la materia orgánica, que va sedimentando lentamente en ese aire ligero y es depositada en el suelo, generando la apariencia de las rayas. Ésta es, por lo menos, una reconstrucción de la historia tritoniana reciente.

Tritón podría tener grandes casquetes polares estacionales de liso hielo de nitrógeno bajo capas de materiales orgánicos oscuros. Nieves de nitrógeno parecen haber caído recientemente en el ecuador. Precipitaciones de nieve, géiseres, polvo orgánico movido por el viento, así como nieblas de gran altitud, son fenómenos que resultan del todo inesperados en un mundo que posee una atmósfera tan delgada.

¿Por qué es tan ligero el aire? La razón es que Tritón se encuentra extremadamente alejado del Sol. Si pudiéramos coger este mundo y ponerlo en órbita alrededor de Saturno, los hielos de nitrógeno y metano se evaporarían rápidamente, se formaría una atmósfera mucho más densa de nitrógeno y metano gaseosos y la radiación generaría una niebla opaca de
tholin.
Se convertiría entonces en un mundo muy parecido a Titán. Si, a la inversa, situáramos a Titán en órbita alrededor de Neptuno, casi toda su atmósfera se helaría produciendo nieves y hielos, el
tholin
desaparecería y no sería reemplazado, el aire se aclararía y su superficie sería visible con luz normal. Obtendríamos un mundo muy parecido a Tritón.

Esos dos mundos no son idénticos. El interior de Titán parece contener mucho más hielo que el de Tritón, y una cantidad de roca notablemente menor. El diámetro de Titán dobla casi al de Tritón.

Aun así, si estuvieran ubicados a la misma distancia del Sol, parecerían hermanos. Alan Stern, del Instituto de Investigación del Sudoeste, sugiere que se trata de dos miembros de una amplia colección de pequeños mundos, ricos en nitrógeno y metano, que se formaron en el sistema solar primitivo. Plutón, que todavía debe ser visitado por una nave espacial, parece otro miembro de dicho grupo. Puede que más allá de Plutón, muchos más estén esperando a ser descubiertos. Las delgadas atmósferas y superficies heladas de todos esos mundos están siendo irradiadas —al menos por rayos cósmicos, si no por otro tipo de rayos— y se están formando conglomerados orgánicos ricos en nitrógeno. Así pues, parece indudable que la materia de la vida no solamente se halla presente en Titán, sino que se encuentra esparcida por los pálidos y fríos confines más exteriores de nuestro sistema planetario.

Recientemente se ha descubierto otra clase de objetos pequeños, cuyas órbitas los llevan —al menos parte del tiempo— más allá de Neptuno y Plutón. Llamados en ocasiones planetas menores o asteroides, es más probable que se trate de cometas inactivos (sin cola, claro está; tan lejos del Sol sus hielos no tienen ocasión de vaporizarse con facilidad). No obstante, son más grandes que los cometas que comúnmente conocemos. Podrían ser la vanguardia de una amplia serie de pequeños mundos que se extienden desde la órbita de Plutón hasta medio camino de la estrella más cercana. La provincia más interior de la Nube de cometas de Oort, de la cual posiblemente formen parte estos nuevos objetos, recibe el nombre de Cinturón de Kuiper, en honor a mi tutor Gerard Kuiper, el primero en sugerir su existencia. Los cometas de corto periodo —como el Halley— surgen en el Cinturón de Kuiper, responden a los impulsos gravitatorios, van a parar a la parte interior del sistema solar, desarrollan sus colas y adornan nuestros cielos.

A fines del siglo XIX, esos bloques constructivos de mundos —entonces meras hipótesis— eran llamados «planetesimales». La palabra nos recuerda, supongo, de alguna manera, a «infinitesimales»: se necesita un número infinito de ellos para llegar a formar algo. No es
tan
extremo el caso de estos corpúsculos del espacio, si bien sería necesario un gran número de ellos para formar un planeta. Por ejemplo, para llegar a formar un planeta con la masa de la Tierra se requeriría la aglutinación de billones de cuerpos del tamaño de un kilómetro cada uno. Una vez hubo cantidades mucho mayores de pedazos de mundo en la porción planetaria del sistema solar. La mayoría de ellos han desaparecido en la actualidad, ya sea eyectados al espacio interestelar, engullidos por el Sol o sacrificados en la gran empresa de construir, lunas y planetas. Pero, más allá de Neptuno y Plutón, los desechos, los remanentes que nunca fueron agregados a mundos pueden estar a la espera, unos pocos más bien grandes, del orden de los cien kilómetros, y cantidades realmente imponentes de cuerpos de un kilómetro y más pequeños, salpicando el sistema solar exterior en todo el camino hacia la Nube de Oort.

En este sentido, sí hay planetas más allá de Neptuno y Plutón, pero ni con mucho tan grandes como los planetas jovianos, ni siquiera como Plutón. Mundos más grandes podrían ocultarse, por lo que sabemos, en la oscuridad más allá de Plutón, mundos que pueden ser llamados con toda propiedad planetas. Cuanto más alejados se encuentran, menos probabilidades existen de que hayamos podido detectarlos. Sin embargo, no pueden estar demasiado cerca de Neptuno, pues sus tirones gravitatorios habrían alterado perceptiblemente las órbitas de Neptuno y Plutón, así como las trayectorias de las naves espaciales
Pioneer 10
y
11
y
Voyager 1 y 2.

Los cuerpos cometarios recién descubiertos (con nombres como 1992 QB y 1993 FW) no son planetas en este sentido. Si nuestro umbral de detección no ha podido abarcarlos hasta ahora, es muy probable que queden muchos de ellos por descubrir en el sistema solar exterior, tan lejos, que difícilmente son visibles desde la Tierra, tan lejos, que llegar hasta ellos requiere un viaje larguísimo. Pero naves pequeñas y rápidas con destino a Plutón y más allá entran dentro de nuestras capacidades. Sería una excelente idea lanzar una misión de exploración a Plutón y su luna Caronte, y luego, si fuera posible, programar un encuentro exterior con alguno de los residentes del Cinturón de cometas Kuiper.

Los núcleos rocosos de Urano y Neptuno, similares al de la Tierra, parecen haberse apretado primero y haber atraído luego gravitatoriamente cantidades masivas de los gases hidrógeno y helio de la antigua nebulosa a partir de la cual se formaron los planetas. Originalmente, vivían en una tormenta de granizo. Sus gravedades eran apenas suficientes para eyectar lejos del dominio de los planetas, cuando se acercaban demasiado, trozos de mundo helados que pasaban a poblar la Nube de cometas de Oort. Júpiter y Saturno se convirtieron en gigantes gaseosos por ese mismo proceso. Pero sus gravedades eran demasiado fuertes para formar parte de la Nube de Oort: los mundos helados que se acercaban a ellos salían gravitatoriamente despedidos hacia el exterior del sistema solar, condenados a vagar para siempre en el inmenso océano de la oscuridad interestelar.

Por tanto, los hermosos cometas que ocasionalmente nos causaban a los humanos admiración y temor, que producían cráteres en las superficies de los planetas interiores y de las lunas exteriores, y que hoy ponen en peligro la vida en la Tierra, resultarían desconocidos e inofensivos para nosotros si Urano y Neptuno no se hubieran desarrollado hasta convertirse en mundos gigantes, 4 500 millones de años atrás.

H
A LLEGADO EL MOMENTO
de dedicar un breve interludio a los planetas situados
mucho
más allá de Neptuno y Plutón, los planetas de otras estrellas.

Muchas estrellas próximas se hallan rodeadas por delgados discos de gas y polvo orbitante, que se extienden a menudo hasta cientos de unidades astronómicas (UA)
[19]
desde la estrella local (los planetas más exteriores, Neptuno y Plutón, se encuentra a unas 40 UA del Sol). Estrellas más jóvenes similares al Sol tienen más probabilidades de poseer discos que las viejas. En algunos casos existe un agujero en el centro del disco al igual que en un disco de vinilo. El agujero se extiende a unas 30 o 40 UA de la estrella. Eso se cumple, por ejemplo, en el disco que rodea las estrellas Vega y Epsilon Eridani. El agujero en el disco que rodea Beta Pictoris solamente se proyecta 15 UA desde la estrella. Existe una posibilidad real de que esas zonas interiores libres de polvo hayan sido desalojadas por planetas que se han formado allí recientemente. De hecho, dicho proceso de barrido es el que se ha pronosticado para la historia primitiva de nuestro sistema planetario. A medida que van progresando las observaciones, quizá puedan detectarse detalles reveladores en la configuración de las regiones de polvo y de las zonas carentes de él que indiquen la presencia de planetas demasiado pequeños y oscuros para ser vistos directamente. Los datos espectroscópicos sugieren que dichos discos giran y que la materia se precipita hacia las estrellas centrales, tal vez procedente de cometas formados en el disco, desviados por los planetas que no percibimos, y se evapora al aproximarse demasiado al sol local.

Other books

The Lessons by Elizabeth Brown
Christmas With the Colburns by Keely Brooke Keith
Secret Guardian by Jill Sanders
The Lonely Polygamist by Brady Udall
Echoes of the Heart by Alyssa J. Montgomery
Breaking Lorca by Giles Blunt
Make: Electronics by Charles Platt