We Are Our Brains (27 page)

Read We Are Our Brains Online

Authors: D. F. Swaab

BOOK: We Are Our Brains
4.56Mb size Format: txt, pdf, ePub

In the case of brain disorders associated with aggressive behavior,
two areas of the brain working together are of special significance: the prefrontal cortex (
fig. 15
) and the amygdala (
fig. 26
). The front of the brain, the prefrontal cortex (PFC), inhibits aggressive behavior and is crucial for moral judgments. Children whose PFC has been damaged often have difficulty learning moral and social rules. Vietnam veterans with damage to the prefrontal cortex became more aggressive and violent, and impulsive murderers also show reduced activity in their PFC. Brain disorders that affect the PFC tend to be associated with aggressive behavior. A surgeon who carved his name in a patient's abdomen at the end of an operation turned out to be suffering from Pick's disease, a form of dementia that starts in the PFC. Schizophrenia, also marked by reduced activity in the PFC, can lead to aggressive behavior. John Hinckley Jr. gained notoriety after his attempt to assassinate President Reagan. (The bullet from his pistol hit Reagan under the left armpit and bored through his left lung but stopped an inch from his heart.) Hinckley's brain scan, which went around the whole world, clearly showed the shrinking of the brain that's typical of schizophrenia. He's still in prison. In 2003, another schizophrenic patient, Mijailo Mijailović, murdered the Swedish foreign minister, Anna Lindh, after he stopped taking his medication. He believed that Jesus had chosen him for this purpose and heard voices telling him to commit the murder. Conversely, aggressive behavior can sometimes be the first symptom of schizophrenia.

The amygdala (
fig. 26
), an almond-sized structure, is located deep within the temporal lobe. When you hold the gelatinous mass of a brain in your hands during an autopsy, you can feel, within the pole of the temporal lobe, the solid little button of the amygdala. Stimulation of the amygdala inhibits or induces aggressive behavior, depending where and how it's done. Its inhibitory effect was convincingly demonstrated by the Spanish physiologist José Manuel Rodriguez Delgado, who was able to stop a bull in mid-charge through the remote electrical stimulation of its amygdala. If you disable
this structure on both sides, even sewer rats will become tame. Some psychopaths have a malfunction of the amygdala. This prevents them from seeing from their victims' facial expressions that they are suffering and thus from feeling empathy toward them. In 1966, Charles Whitman killed his wife and mother and then went on to shoot fourteen people dead and wound thirty-one others at the University of Texas in Austin. He was found to have a tumor of the temporal lobe, which was pressing on the amygdala. It makes you wonder how many other people who go on shooting sprees in schools or elsewhere have a brain disorder. Ulrike Meinhof started her career as a critical journalist, later becoming one of the founders of the Rote Armee Fraktion in Germany, a terrorist group that killed thirty-four people. Meinhof committed suicide in her cell in 1976. Doctors had previously discovered that she had an aneurysm, a bulge in the wall of a blood vessel at the base of the brain that was pressing right on the amygdala. This caused lasting damage. When she was operated on for the aneurysm, the neurosurgeon also damaged the prefrontal cortex, so there were two possible causes for her aggressive and lawless behavior.

Other brain disorders that are sometimes linked with aggression are mood disorders, borderline personality disorder, learning disabilities, brain infarcts, MS, Parkinson's disease, and Huntington's disease. Even patients with dementia can be aggressive. In 2003, an eighty-one-year-old Dutch woman who'd been placed in a nursing home because of her dementia murdered her eighty-year-old roommate. She was found on the toilet in a confused state, and it was only when a nurse took her back to bed that the victim was spotted. Fortunately, the Public Prosecution Service decided not to prosecute. In “civilized” countries like the United States and Japan, schizophrenic patients who have committed a murder can still be given a death sentence. I hope that will never happen again in the Netherlands. But how often does our criminal justice system violate the M'Naghten rules?

GUILT AND PUNISHMENT

The criminal justice authorities should learn from the medical world how to adopt an evidence-based approach founded on properly controlled studies.

Criminal law can only be applied to people with a healthy brain. This principle also has a biological foundation. Rhesus monkeys normally punish any animal that doesn't stick to the group rules. However, the primatologist Frans de Waal observed that a mentally retarded rhesus monkey with Down syndrome was allowed to get away with breaking all of the group's standard rules. Humans should behave similarly, but apparently we find it hard to do so.

Forensic psychiatrist Theo Doreleijers discovered thirteen years ago that 65 percent of underage delinquents brought before a public prosecutor had psychiatric disorders, but medical reports had been requested in less than half of the cases. Can we hold such children liable for their deeds? Child abusers have often themselves been abused as children, so to what extent are they culpable? How accountable is an adolescent for his actions when his brain is suddenly deluged with sex hormones that are modifying the function of almost all of its parts? A child has to learn to deal with a whole new brain during puberty, at a time when the prefrontal cortex, which inhibits impulsiveness and controls moral behavior, is extremely immature. And how accountable are addicts for their condition, which was caused by tiny variations in their DNA or malnourishment in the womb?

In other words, moral condemnation and punishment based on personal accountability rest on very shaky ground. However, our sense of morality is strongly anchored in our evolutionary development, because it affects the survival of the group. It also accounts for the idea that each individual is responsible for his or her own deeds, illusory though this is.

However, contrary to what is sometimes thought, that we're programmed in certain ways doesn't mean that we should do away with punishment entirely. After all, the next time we decide whether or not to do something, our brains can factor an effective punishment into our unconscious deliberations. And punishment also has aspects that have nothing to do with personal accountability. Society requires criminals to atone for their deeds; it also wants them to be locked up for its protection and as a warning to others—though the effectiveness of this latter aspect is debatable.

The knowledge that we possess about the neurobiological risk factors for aggressive or criminal behavior always relates to a
group
of individuals with a certain characteristic. As a result, we can't assure a court that a particular factor has contributed to a particular
individual
committing a crime. Some therefore claim that the practical contribution of neurobiological knowledge to sentencing or detention on remand is of marginal importance. Ybo Buruma, a member of the Dutch Supreme Court, rightly said in an interview in the newspaper
NRC Handelsblad
(November 7, 2000), “Courts, like doctors, deal with individuals.” But he went on to draw exactly the wrong conclusion: “I think all this knowledge is terrific, but as long as we can't apply it on an individual level in court cases, it's of no use to us.” Thus he reduced law as a science to the level of medicine a hundred years ago, when doctors also treated their patients on an individual basis to the best of their ability but had no idea what the effect would be. Medicine has learned its lesson; evidence-based medicine is always founded on the effects on a well-defined group of patients. You never know whether the one patient you prescribe medicine for will belong to the 95 percent who are cured as a result or the 5 percent who will experience serious side effects and, very occasionally, die. Yet you make the decision to treat that one patient on the basis of good data. And this is how we should look at the factors that determine aggressive and criminal behavior in a particular group and the way in which this group responds to preventive measures and different types and degrees of punishment. Only on the
basis of such data can we make pronouncements about an individual that are based on probability, in the knowledge that our judgment regarding that person can't be entirely certain but will at least be correct with respect to the group to which he belongs. Alas, the criminal justice authorities have a very long way to go in this regard. They keep trying out new forms of punishment, from community sentencing to boot camps for young criminals, without a proper control group, which means that the effectiveness of a given punishment will always be controversial.

VIOLENT WHILE ASLEEP

There is, in all of us, even in good people, a lawless wild beast that emerges when we sleep.

Plato,
The Republic
, 380
B.C.

Dream sleep coincides with darting movements of the eyes, which is why it's also known as REM (rapid eye movement) sleep. It's also referred to as “paradoxical sleep” because EEG scans reveal that the brain is extremely active at this time. This combination of brain activity and rapid eye movement was discovered by Eugene Aserinsky in 1952, when he monitored his small son during REM sleep.

During dream sleep we exhibit many of the characteristics of psychiatric and neurological disorders. Our higher visual centers are activated, and we hallucinate like patients with schizophrenia. We experience incredibly bizarre events in a world in which the laws of physics and of everyday society no longer apply. Dreams often carry an emotional or aggressive charge; not surprisingly, the amygdala (
fig. 26
), the center of aggressive behavior, is activated at these times. When we dream we make up stories, just as people with alcohol dementia fill up the holes in their memories with stories about events that never took place (see
chapter 10
). A few minutes later we forget everything that we experienced in our dreams, as if we were suffering
from a severe form of dementia. During dreams we lose muscle tension, just as narcolepsy sufferers with cataplexy do while awake.

It's not for nothing that we lose muscle tension while we sleep. Retaining it can lead to activity during sleep; sleepwalkers, for instance, are deeply asleep, but they have normal muscle tension. They can perform automatic, semi-purposeful actions, of which walking is an example. They are unaware of what they do and are afterward unable to remember any of their actions. (A scan of a sleepwalking patient indeed showed that large parts of the cerebral cortex aren't activated during sleep.) The French scientist Michel Jouvet carried out experiments on animals in which he created slight lesions in the brain stem, destroying the nerve cells that make the muscles relax during sleep. The animals in the study were shown to carry out the actions that they were dreaming about. He saw a cat in dream sleep leap on its imaginary prey with open eyes, without having the least awareness of her surroundings. She wasn't at all interested in a bowl of tempting cat food, nor did she purposefully remove the mess that was placed on her coat, though she did automatically clean her coat while asleep. Rats with lesions of this kind played with invisible rats during their dreams, and squirrels dug up nuts.

Humans, too, sometimes perform complicated actions during dream sleep of the type witnessed in the above animal study. They also occasionally become aggressive. One woman told me:

Three years ago my husband was suffering from nervous tension. One night he made such strange noises in his sleep that he woke me up. I tried to calm him by stroking his head. That turned out to be a bad idea, because he grabbed me by the throat and tried to throttle me. Since I was by now wide awake I was able to free myself and to wake my husband. When I told him what had happened he was dreadfully shocked, so much so that he hardly dared go back to sleep. He told me that he'd dreamed he was being attacked and that he'd tried to defend himself. This dream recurred a few times. Each time I was woken up by the sounds he was making.
I made sure to put some distance between us before stroking him softly so that he calmed down again. We discussed these events with our children and with friends, and wondered what would have happened if I hadn't been able to free myself. Would he have gone to jail?

That is indeed the question. People who are tried for crimes are sometimes acquitted on the grounds that they had clearly been asleep when they broke the law. Some people can indeed perform very complex actions while asleep without being the least aware of it. In 90 percent of cases these are men, and these events occur in a transitional stage between REM sleep and other forms of sleep. Such actions, like sleepwalking, are completely automatic. People have been accused of robbery, rape, and attempted murder while asleep, and some have even been thought to commit suicide, though such deaths could also simply be attributed to accidents while sleepwalking. Those affected sometimes have brain disorders like narcolepsy or Parkinson's disease, but in many cases there's absolutely no neurological or psychiatric abnormality. Events of this kind can be induced by fever, alcohol, lack of sleep, stress, or medication. Some sleepwalkers who are extremely mild and amiable when awake are shockingly violent when asleep.

In 1987 Kenneth Parks drove fourteen miles while asleep and battered his mother-in-law to death. He woke up just as he was about to kill his father-in-law and gave himself up to the police. He was subsequently acquitted. Julius Lowe was a frequent sleepwalker, and during one of these episodes he killed his eighty-two-year-old father, to whom he was extremely attached. A man by the name of Butler shot his wife dead while in a sleep-confused state; he was later found guilty, however. While on vacation in 2008, a fifty-nine-year-old Briton called Brian Thomas strangled his wife, to whom he had been married for forty years. He told the court that he had been dreaming that he was fighting with a robber who had broken into their caravan. Thomas had suffered from sleep disorders, including sleepwalking
and insomnia, from an early age. He was taking medication for this condition, but a side effect was that he became impotent. Since he and his wife were going on vacation and wanted to be “intimate,” he had briefly stopped taking his pills. The case against him was dropped when the judge ruled that he couldn't be held responsible for this tragedy on account of his sleep disorders.

Other books

Graves' Retreat by Ed Gorman
Dial L for Loser by Lisi Harrison
The Horror Squad 2 by TJ Weeks
Anarchy Found by J.A. Huss
Doppelganger Blood by Bonnie Lamer
Fancy White Trash by Marjetta Geerling
Freddy and Simon the Dictator by Walter R. Brooks