WHITE MARS (23 page)

Read WHITE MARS Online

Authors: Brian Aldiss,Roger Penrose

Tags: #Science fiction, #General, #Science Fiction - General, #Fiction, #Fiction - Science Fiction, #Mars (Planet), #Space colonies, #Twenty-first century, #Brian - Prose & Criticism, #Utopias, #Utopian fiction, #Aldiss

BOOK: WHITE MARS
9.62Mb size Format: txt, pdf, ePub

'This is a serious issue. Without mass everything would disintegrate. We'd be instantly dispersed into a flash of ethereal substance - not even mist - spreading outwards with the speed of light. Not a brilliant way to get to the nearest star.'

The feeble joke earned chuckles enough from the audience for Thorgeson to relax a little.

Euclid spoke. 'So tell us, what is the purpose of the Mars Omega Smudge Project?'

Glancing at a prepared script, Thorgeson continued, 'The Omega Smudge is what has brought us here. To explain why we call this vital smudge a smudge I should remind you of some history of particle physics last century and earlier this century.

'Euclid, do you remember the names given to the six varieties of basic subnuclear entity which was postulated last century?'

Euclid: 'Down, Up, Strange, Charm, Bottom, Top.'

'He has a faultless memory,' Thorgeson said, as another chuckle ran through the listeners.

He continued for a while, describing highlights of twentieth-century particle physics, which I was able to follow mainly because of Kathi's earlier explanations.

He was saying,'... the superconducting supercollider or SSC that was planned to be built under Texas was a miracle that did not quite happen. It would have cost billions and was designed to discover what was referred to as "the Higgs particle". I see that some of you DOPs remember the name, though, of course, not the excitement of the time.

'Here's an artist's impression of the proposed SSC entrance.' He showed a vidslide in 3D of an airy and imposing glass structure, topped by a geodesic dome.

Euclid: 'Why would anyone think that so much money should be spent in search of a single particle?'

'It's a good question, Euclid. In the end the US Congress dropped the project. But the physicists - why, they argued that finding the elusive "Higgs" would have supplied them with the answer to the question of what comprises the basic units of the universe.'

Euclid: 'Did they believe that in those days?'

'Well, maybe not quite. But they did regard the finding of the Higgs as vitally important in their scheme of things. Also, completing the SSC would have achieved other targets. They put all their eggs in one basket to get the collider funded. The argument became over-heated. Certain physicists assigned an almost religious quality to the Higgs, referring to it as "the God particle" - a good journalistic phrase...'

Euclid: 'Did they believe that in those days?'

Thorgeson looked nonplussed. 'No Euclid, that's where you say, "Why was the Higgs regarded as so important?"'

Amid sympathetic laughter, Euclid spoke. 'Why was the Higgs regarded as so important?'

At his ease now, Thorgeson said, 'I'm glad you asked me that, Euclid. It all has to do with the question of mass. You are aware that most particles of nature have mass, but the photon and graviton - the basic quanta of electromagnetism and gravitation respectively - are exceptions. Those quanta of which matter is mainly composed, the protons and neutrons or their constituent quarks, are massive particles. So also are the kliks and pseudo-kliks that compose the much less massive leptons, such as electrons and muons.'

As Thorgeson continued, referring to 'LEP', the 'LHC', and various particle physics notions such as 'lepton' and 'hadron', I found that I was beginning to lose the thread of much of what he was saying. Fortunately Kathi's earlier explanations were still useful to me, so I knew what some of the terms meant.

Then I heard Euclid saying, 'Could they use the LHC to trace the Higgs? Could they use the LHC to trace the Higgs? Could they use the LHC to trace the Higgs?'

Thorgeson thumped Euclid's back. 'You mean to say, "Could they use the LHC to trace the Higgs?" Well, they finally got the equipment working in about 2005...'

I realised that Euclid was talking with Thorgeson's voice although, without inflection, it sounded almost like a foreign language. But Thorgeson had programmed it. It amused me to think that, although Thorgeson was a stalwart 'hard science' man where questions of the human mind were concerned - believing there was nothing more to human mentality than the functions of a very effective quantputer - he could not resist making fun of his creature now and again.

Kathi had once tried to explain this 'hard science' position to me. Apparently it is commonly held by today's scientists.

She told me that they are simply missing the point. She explained their view to be that human mentality results solely from those physical functions that underlie an ordinary quantputer. I'm not really familiar with these underlying principles, but Kathi did have a go at trying to explain them. Apparently quantputers, and their smaller brothers the quantcomps, act by a combination of brute force computation in the old twentieth-century sense, and a collection of quantum effects referred to as 'coherence', 'entanglement' and 'state reduction'. Although I was never clear about these terms, Kathi explained that mentatropy and CPS detectors ('savvyometers'!) are based on such effects.

Thorgeson was saying, 'The riddle of mass needed a solution. A Korean scientist by the name of Tar Il-Chosun came up with a brilliant conception that, in effect, increased the energy range of the LHC by a factor of about one hundred. As a result, by 2009 the LHC had surveyed the complete range of energies that could possibly be relevant to the Higgs mass. Frustratingly, there was nothing that could be clearly identified with the Higgs. Instead they found something else, as strange as it was interesting.'

Euclid: 'What was that?'

'Using the newly perfected Ng-Robinson Plot, they found a smudge, roughly where the Higgs particle should have appeared.'

Euclid: 'So they found the Higgs?'

'They just found a smudge. No particle.'

Euclid: 'So that's where the name Smudge came from...'

'Absolutely.'

Euclid: 'But if they found this smudge in 2009, why all this business of setting up an umpteen-billion-dollar project to look for it here on Mars?' (Spoken with that same bland pleasant expression on its face.)

'What excitement this smudge caused! Excitement and dissension in the ranks! This, by the way, was when the consortium we know as EUPACUS was being assembled. Since CERN was already involved, the Europeans agreed to invest massively in it. You can bet they're regretting that now!

'The first problem the smudge threw up was that, by its very nature, its appearance on the Plot merely indicated a probability of something being there. The Higgs smudge had a very faint intensity, meaning the probability of the existence of a particle corresponding to any particular position on the Plot was very slight. Yet, on the other hand, the smudge covered so large a region of the Plot that the overall probability that something was there approached certainty.

'More experiments needed. The smudge remained.

'With finances forthcoming, the Americans with Asian and European backing finally built the SHC, the Superconducting Hypercollider, of beloved memory. My father worked on it as a young man, in an engineering capacity. They constructed this monumental bit of Big Science not in Texas, but straddling the states of Utah and Nevada.'

He projected a vidslide of an artist's cutaway of the great tube, burrowing under desert.

'And when they got the SHC working - darned if it didn't come out with the same results as previously! Seems a lot of dough had gone down the drain for nothing, one more time! The sought-after smudge remained just a smudge ... At that, it was a smudge on an entirely theoretical construct, the Ng-Robinson Plot. No actual Higgs particle could be pin-pointed. Yet, you see, the overall probability that something was there amounted to certainty.'

Euclid: 'No actual particle could continue to produce just an unresolvable smudge on the Plot?'

'Quite right, Euclid. They had a first-class mystery on their hands. And there, just when it gets exciting, we're going to take a break for ten minutes.'

Applause broke out as I led Jon into an anteroom. We left Euclid on the platform, standing facing the audience with his customary pleasant blank expression.

Thorgeson shut the door behind us and came towards me saying, 'I'm doing all this for you, my little Asian honeypot!'

He wrapped an arm round my waist, pulled me close, and kissed my lips.

I gave a small shriek of surprise. Asian honeypot indeed! He did not release me, but showered compliments on me, saying he had adored me ever since he had set eyes on me in the science unit. I did not mind the compliments. When he started to kiss me again, and I felt the warmth of his body against me, I found myself returning them.

I rejoiced when his tongue slipped into my mouth. I was becoming quite enthusiastic when the door opened and Tom and some others came in to congratulate Thorgeson on his exposition. This was one time when I felt really mad at Tom.

Back we marched into the hall. Thorgeson seemed quite calm. I was trembling. He had been about to grab my breasts under my clothes, and I could not decide how I would feel about that. I was furious with the situation. It was all I could do to sit there and listen to him. How should I deal with him when the lecture was over - with that Euclid looking on, too?

However, I now saw a new kind of passion in Jon -not a physical passion but an intellectual one, as he took over from Euclid and spoke of the next epoch of scientific discovery.

'Euclid and I were talking about the smudge mystery,' he said when the audience had settled down. 'I will skip some years of confusion and frustration and speak about the year 2024. That was the year when there were two breakthroughs, one experimental, one theoretical.

'The experimental breakthrough came when SHC got up to full power, far beyond anything originally planned for the unbuilt SSC, using a further innovation contributed by the Indonesian physicist, Jim Kopamtim. Lo and behold at far greater energies than were achieved previously, another smudge was found!

'So the Higgs smudge had to be rechristened the alpha-smudge, while the new one went by the name of beta-smudge.

The theoretical breakthrough - well, I should say it came a while before the SHC observations. A brilliant young Chinese mathematician, Chin Lim Chung, achieved a completely reformulated theoretical basis for particle physics as it stood at the time. Miss Chin introduced some highly sophisticated new mathematical ideas. She showed how a permanent smudge could indeed come about on the Ng-Robinson Plot,
but
the culprit could not possibly be a particle in any ordinary sense.

'It was a new kind of entity entirely. So from henceforth it was simply referred to as a
smudge.

'Soon after the SHC announcement, Chin Lim Chung, working in conjunction with our own Dreiser Hawkwood, figured out that the alpha and beta smudges had to belong to a whole sequence of smudges, at higher and higher energies. It was clear that until this sequence was known as a whole, there was going to be no solution to the mystery of mass.

'Mother Teresa! It was as though we had discovered a row of galaxies on our doorstep!' As if he could not stop himself, he added, 'The remarkable Miss Chin is still alive and working. I happen to know her daughter.'

Something in Jon's manner, in his very body language, suggested to me that this lady must have been his Chinese lover, back on Earth.

Euclid: 'You cannot forever go on building bigger and bigger machines. So why did not the physicists just give up on the mystery?'

'Well, we don't give up easily.' He shot me a glance as he said this. 'It was hoped that once the gamma-smudge was found, then the mystery of mass could be resolved after all.'

Euclid. 'So they built an even bigger super-duper collider, did they? Where this time? Siberia?'

'On the Moon.'

He showed a vidslide of a gleaming section of tube crawling across the Mare Imbrium.

'A collider that formed a ring completely round the lunar surface. Alas for ambition! The Luna project turned out to be a total failure, at least with regard to finding the gamma-smudge. It did produce some data, relatively minor but useful. But no new smudge.'

Euclid: 'A costly mistake, wasn't it? Why did it fail?'

'The bill all merged into Lunar expenses, when the Moon was the flavour of the year, in the late 2030s. After a host of teething troubles, the Luna Collider appeared to do more or less what it was intended to do.

'I guess the final disaster rested with nature herself. She just didn't come up with a smudge - not even with the fantastic energy range available to a collider of that size.'

Euclid: 'Why didn't that kill off the whole idea? But you are about to tell us that after that disaster, funding was found to start all over again
here -
on Mars?'

'Politics came into it. The fact that Mars was a UN protectorate made it tempting. Also, there is the precept that even pure science, however expensive it may seem, pays off in the unforeseen end. Consider the case of genetically mutated crops, and how they have contributed to human longevity. Some people are willing to pay for ever-widening horizons, for freeing the human mind from old shibboleths.

'And there were two further chunks of scientific progress to encourage them - and another different kind of development which had been brewing away for some while earlier.'

Other books

The Bridge of San Luis Rey by Thornton Wilder
How to Be Black by Baratunde Thurston
Absorbed by Crowe, Penelope
3 SUM by Quig Shelby
Vaccinated by Paul A. Offit
Silent Nights by Martin Edwards
Going to Meet the Man by James Baldwin
If You Come Softly by Jacqueline Woodson