A Brief History of Time (4 page)

Read A Brief History of Time Online

Authors: Stephen Hawking

BOOK: A Brief History of Time
11.33Mb size Format: txt, pdf, ePub

A proper theory of the propagation of light didn’t come until 1865, when the British physicist James Clerk Maxwell succeeded in unifying the partial theories that up to then had been used to describe the forces of electricity and magnetism. Maxwell’s equations predicted that there could be wavelike disturbances in the combined electromagnetic field, and that these would travel at a fixed speed, like ripples on a pond. If the wavelength of these waves (the distance between one wave crest and the next) is a meter or more, they are what we now call radio waves. Shorter wavelengths are known as microwaves (a few centimeters) or infrared (more than a ten-thousandth of a centimeter). Visible light has a wavelength of between only forty and eighty millionths of a centimeter. Even shorter wavelengths are known as ultraviolet, X rays, and gamma rays.

Maxwell’s theory predicted that radio or light waves should travel at a certain fixed speed. But Newton’s theory had got rid of the idea of absolute rest, so if light was supposed to travel at a fixed speed, one would have to say what that fixed speed was to be measured relative to.
It was therefore suggested that there was a substance called the “ether” that was present everywhere, even in “empty” space. Light waves should travel through the ether as sound waves travel through air, and their speed should therefore be relative to the ether. Different observers, moving relative to the ether, would see light coming toward them at different speeds, but light’s speed relative to the ether would remain fixed. In particular, as the earth was moving through the ether on its orbit round the sun, the speed of light measured in the direction of the earth’s motion through the ether (when we were moving toward the source of the light) should be higher than the speed of light at right angles to that motion (when we are not moving toward the source). In 1887 Albert Michelson (who later became the first American to receive the Nobel Prize for physics) and Edward Morley carried out a very careful experiment at the Case School of Applied Science in Cleveland. They compared the speed of light in the direction of the earth’s motion with that at right angles to the earth’s motion. To their great surprise, they found they were exactly the same!

Between 1887 and 1905 there were several attempts, most notably by the Dutch physicist Hendrik Lorentz, to explain the result of the Michelson-Morley experiment in terms of objects contracting and clocks slowing down when they moved through the ether. However, in a famous paper in 1905, a hitherto unknown clerk in the Swiss patent office, Albert Einstein, pointed out that the whole idea of an ether was unnecessary, providing one was willing to abandon the idea of absolute time. A similar point was made a few weeks later by a leading French mathematician, Henri Poincaré. Einstein’s arguments were closer to physics than those of Poincaré, who regarded this problem as mathematical. Einstein is usually given the credit for the new theory, but Poincaré is remembered by having his name attached to an important part of it.

The fundamental postulate of the theory of relativity, as it was called, was that the laws of science should be the same for all freely moving observers, no matter what their speed. This was true for Newton’s laws of motion, but now the idea was extended to include
Maxwell’s theory and the speed of light: all observers should measure the same speed of light, no matter how fast they are moving. This simple idea has some remarkable consequences. Perhaps the best known are the equivalence of mass and energy, summed up in Einstein’s famous equation E=mc
2
(where
E
is energy,
m
is mass, and
c
is the speed of light), and the law that nothing may travel faster than the speed of light. Because of the equivalence of energy and mass, the energy which an object has due to its motion will add to its mass. In other words, it will make it harder to increase its speed. This effect is only really significant for objects moving at speeds close to the speed of light. For example, at 10 percent of the speed of light an object’s mass is only 0.5 percent more than normal, while at 90 percent of the speed of light it would be more than twice its normal mass. As an object approaches the speed of light, its mass rises ever more quickly, so it takes more and more energy to speed it up further. It can in fact never reach the speed of light, because by then its mass would have become infinite, and by the equivalence of mass and energy, it would have taken an infinite amount of energy to get it there. For this reason, any normal object is forever confined by relativity to move at speeds slower than the speed of light. Only light, or other waves that have no intrinsic mass, can move at the speed of light.

An equally remarkable consequence of relativity is the way it has revolutionized our ideas of space and time. In Newton’s theory, if a pulse of light is sent from one place to another, different observers would agree on the time that the journey took (since time is absolute), but will not always agree on how far the light traveled (since space is not absolute). Since the speed of the light is just the distance it has traveled divided by the time it has taken, different observers would measure different speeds for the light. In relativity, on the other hand, all observers
must
agree on how fast light travels. They still, however, do not agree on the distance the light has traveled, so they must therefore now also disagree over the time it has taken. (The time taken is the distance the light has traveled—which the observers do not agree
on—divided by the light’s speed—which they do agree on.) In other words, the theory of relativity put an end to the idea of absolute time! It appeared that each observer must have his own measure of time, as recorded by a clock carried with him, and that identical clocks carried by different observers would not necessarily agree.

Each observer could use radar to say where and when an event took place by sending out a pulse of light or radio waves. Part of the pulse is reflected back at the event and the observer measures the time at which he receives the echo. The time of the event is then said to be the time halfway between when the pulse was sent and the time when the reflection was received back: the distance of the event is half the time taken for this round trip, multiplied by the speed of light. (An event, in this sense, is something that takes place at a single point in space, at a specified point in time.) This idea is shown in
Fig. 2.1
, which is an example of a space-time diagram. Using this procedure, observers who are moving relative to each other will assign different times and positions to the same event. No particular observer’s measurements are any more correct than any other observer’s, but all the measurements are related. Any observer can work out precisely what time and position any other observer will assign to an event, provided he knows the other observer’s relative velocity.

Nowadays we use just this method to measure distances precisely, because we can measure time more accurately than length. In effect, the meter is defined to be the distance traveled by light in 0.000000003335640952 second, as measured by a cesium clock. (The reason for that particular number is that it corresponds to the historical definition of the meter—in terms of two marks on a particular platinum bar kept in Paris.) Equally, we can use a more convenient, new unit of length called a light-second. This is simply defined as the distance that light travels in one second. In the theory of relativity, we now define distance in terms of time and the speed of light, so it follows automatically that every observer will measure light to have the same speed (by definition, 1 meter per 0.000000003335640952 second). There is no need to introduce the idea of an ether, whose presence anyway cannot be detected, as the Michelson-Morley experiment showed. The theory of relativity does, however, force us to change fundamentally our ideas of space and time. We must accept that time is not completely separate from and independent of space, but is combined with it to form an object called space-time.

FIGURE 2.1 Time is measured vertically, and the distance from the observer is measured horizontally. The observer’s path through space and time is shown as the vertical line on the left. The paths of light rays to and from the event are the diagonal lines
.

It is a matter of common experience that one can describe the position of a point in space by three numbers, or coordinates. For instance, one can say that a point in a room is seven feet from one wall, three feet from another, and five feet above the floor. Or one could specify that a point was at a certain latitude and longitude and a certain height above sea level. One is free to use any three suitable coordinates,
although they have only a limited range of validity. One would not specify the position of the moon in terms of miles north and miles west of Piccadilly Circus and feet above sea level. Instead, one might describe it in terms of distance from the sun, distance from the plane of the orbits of the planets, and the angle between the line joining the moon to the sun and the line joining the sun to a nearby star such as Alpha Centauri. Even these coordinates would not be of much use in describing the position of the sun in our galaxy or the position of our galaxy in the local group of galaxies. In fact, one may describe the whole universe in terms of a collection of overlapping patches. In each patch, one can use a different set of three coordinates to specify the position of a point.

An event is something that happens at a particular point in space and at a particular time. So one can specify it by four numbers or coordinates. Again, the choice of coordinates is arbitrary; one can use any three well-defined spatial coordinates and any measure of time. In relativity, there is no real distinction between the space and time coordinates, just as there is no real difference between any two space coordinates. One could choose a new set of coordinates in which, say, the first space coordinate was a combination of the old first and second space coordinates. For instance, instead of measuring the position of a point on the earth in miles north of Piccadilly and miles west of Piccadilly, one could use miles northeast of Piccadilly, and miles northwest of Piccadilly. Similarly, in relativity, one could use a new time coordinate that was the old time (in seconds) plus the distance (in light-seconds) north of Piccadilly.

It is often helpful to think of the four coordinates of an event as specifying its position in a four-dimensional space called space-time. It is impossible to imagine a four-dimensional space. I personally find it hard enough to visualize three-dimensional space! However, it is easy to draw diagrams of two-dimensional spaces, such as the surface of the earth. (The surface of the earth is two-dimensional because the position of a point can be specified by two coordinates, latitude and longitude.) I
shall generally use diagrams in which time increases upward and one of the spatial dimensions is shown horizontally. The other two spatial dimensions are ignored or, sometimes, one of them is indicated by perspective. (These are called space-time diagrams, like
Fig. 2.1
.) For example, in
Fig. 2.2
time is measured upward in years and the distance along the line from the sun to Alpha Centauri is measured horizontally in miles. The paths of the sun and of Alpha Centauri through space-time are shown as the vertical lines on the left and right of the diagram. A ray of light from the sun follows the diagonal line, and takes four years to get from the sun to Alpha Centauri.

As we have seen, Maxwell’s equations predicted that the speed of light should be the same whatever the speed of the source, and this has been confirmed by accurate measurements. It follows from this that if a pulse of light is emitted at a particular time at a particular point in space, then as time goes on it will spread out as a sphere of light whose size and position are independent of the speed of the source. After one millionth of a second the light will have spread out to form a sphere with a radius of 300 meters; after two millionths of a second, the radius will be 600 meters; and so on. It will be like the ripples that spread out on the surface of a pond when a stone is thrown in. The ripples spread out as a circle that gets bigger as time goes on. If one stacks snapshots of the ripples at different times one above the other, the expanding circle of ripples will mark out a cone whose tip is at the place and time at which the stone hit the water (
Fig. 2.3
). Similarly, the light spreading out from an event forms a (three-dimensional) cone in (the four-dimensional) space-time. This cone is called the future light cone of the event. In the same way we can draw another cone, called the past light cone, which is the set of events from which a pulse of light is able to reach the given event (
Fig. 2.4
).

Other books

Pure Lust Vol. 1 by Parker, M. S., Wild, Cassie
The Wounds in the Walls by Heidi Cullinan
Love's Long Shadow by Ciara Knight
The Secret of Willow Lane by Virginia Rose Richter
Romancing the Ranger by Jennie Marts
Cambio. by Paul Watzlawick
It's Raining Men by Milly Johnson
New York in the '50s by Dan Wakefield