A Brief History of Time (8 page)

Read A Brief History of Time Online

Authors: Stephen Hawking

BOOK: A Brief History of Time
10.31Mb size Format: txt, pdf, ePub

All of the Friedmann solutions have the feature that at some time in the past (between ten and twenty thousand million years ago) the distance between neighboring galaxies must have been zero. At that time, which we call the big bang, the density of the universe and the curvature of space-time would have been infinite. Because mathematics cannot really handle infinite numbers, this means that the general theory of relativity (on which Friedmann’s solutions are based) predicts that there is a point in the universe where the theory itself breaks down. Such a point is an example of what mathematicians call a singularity. In fact, all our theories of science are formulated on the assumption that space-time is smooth and nearly flat, so they break down at the big bang singularity, where the curvature of space-time is infinite. This means that even if there were events before the big bang, one could not use them to determine what would happen afterward, because predictability would break down at the big bang.

Correspondingly, if, as is the case, we know only what has happened since the big bang, we could not determine what happened beforehand. As far as we are concerned, events before the big bang can have no consequences, so they should not form part of a scientific model of the universe. We should therefore cut them out of the model and say that time had a beginning at the big bang.

Many people do not like the idea that time has a beginning, probably because it smacks of divine intervention. (The Catholic Church, on the other hand, seized on the big bang model and in 1951 officially pronounced it to be in accordance with the Bible.) There were therefore a number of attempts to avoid the conclusion that there had been a big bang. The proposal that gained widest support was called the steady state theory. It was suggested in 1948 by two refugees from Nazi-occupied Austria, Hermann Bondi and Thomas Gold, together with a Briton, Fred Hoyle, who had worked with
them on the development of radar during the war. The idea was that as the galaxies moved away from each other, new galaxies were continually forming in the gaps in between, from new matter that was being continually created. The universe would therefore look roughly the same at all times as well as at all points of space. The steady state theory required a modification of general relativity to allow for the continual creation of matter, but the rate that was involved was so low (about one particle per cubic kilometer per year) that it was not in conflict with experiment. The theory was a good scientific theory, in the sense described in
Chapter 1
: it was simple and it made definite predictions that could be tested by observation. One of these predictions was that the number of galaxies or similar objects in any given volume of space should be the same wherever and whenever we look in the universe. In the late 1950s and early 1960s a survey of sources of radio waves from outer space was carried out at Cambridge by a group of astronomers led by Martin Ryle (who had also worked with Bondi, Gold, and Hoyle on radar during the war). The Cambridge group showed that most of these radio sources must lie outside our galaxy (indeed many of them could be identified with other galaxies) and also that there were many more weak sources than strong ones. They interpreted the weak sources as being the more distant ones, and the stronger ones as being nearer. Then there appeared to be less common sources per unit volume of space for the nearby sources than for the distant ones. This could mean that we are at the center of a great region in the universe in which the sources are fewer than elsewhere. Alternatively, it could mean that the sources were more numerous in the past, at the time that the radio waves left on their journey to us, than they are now. Either explanation contradicted the predictions of the steady state theory. Moreover, the discovery of the microwave radiation by Penzias and Wilson in 1965 also indicated that the universe must have been much denser in the past. The steady state theory therefore had to be abandoned.

Another attempt to avoid the conclusion that there must have been a big bang, and therefore a beginning of time, was made by two Russian scientists, Evgenii Lifshitz and Isaac Khalatnikov, in 1963. They suggested that the big bang might be a peculiarity of Friedmann’s models alone, which after all were only approximations to the real universe. Perhaps, of all the models that were roughly like the real universe, only Friedmann’s would contain a big bang singularity. In Friedmann’s models, the galaxies are all moving directly away from each other—so it is not surprising that at some time in the past they were all at the same place. In the real universe, however, the galaxies are not just moving directly away from each other—they also have small sideways velocities. So in reality they need never have been all at exactly the same place, only very close together. Perhaps then the current expanding universe resulted not from a big bang singularity, but from an earlier contracting phase; as the universe had collapsed the particles in it might not have all collided, but had flown past and then away from each other, producing the present expansion of the universe. How then could we tell whether the real universe should have started out with a big bang? What Lifshitz and Khalatnikov did was to study models of the universe that were roughly like Friedmann’s models but took account of the irregularities and random velocities of galaxies in the real universe. They showed that such models could start with a big bang, even though the galaxies were no longer always moving directly away from each other, but they claimed that this was still only possible in certain exceptional models in which the galaxies were all moving in just the right way. They argued that since there seemed to be infinitely more Friedmann-like models without a big bang singularity than there were with one, we should conclude that there had not in reality been a big bang. They later realized, however, that there was a much more general class of Friedmann-like models that did have singularities, and in which the galaxies did not have to be moving any special way. They therefore withdrew their claim in 1970.

The work of Lifshitz and Khalatnikov was valuable because it
showed that the universe
could
have had a singularity, a big bang, if the general theory of relativity was correct. However, it did not resolve the crucial question: Does general relativity predict that our universe
should
have had a big bang, a beginning of time? The answer to this came out of a completely different approach introduced by a British mathematician and physicist, Roger Penrose, in 1965. Using the way light cones behave in general relativity, together with the fact that gravity is always attractive, he showed that a star collapsing under its own gravity is trapped in a region whose surface eventually shrinks to zero size. And, since the surface of the region shrinks to zero, so too must its volume. All the matter in the star will be compressed into a region of zero volume, so the density of matter and the curvature of space-time become infinite. In other words, one has a singularity contained within a region of space-time known as a black hole.

At first sight, Penrose’s result applied only to stars; it didn’t have anything to say about the question of whether the entire universe had a big bang singularity in its past. However, at the time that Penrose produced his theorem, I was a research student desperately looking for a problem with which to complete my Ph.D. thesis. Two years before, I had been diagnosed as suffering from ALS, commonly known as Lou Gehrig’s disease, or motor neuron disease, and given to understand that I had only one or two more years to live. In these circumstances there had not seemed much point in working on my Ph.D.—I did not expect to survive that long. Yet two years had gone by and I was not that much worse. In fact, things were going rather well for me and I had gotten engaged to a very nice girl, Jane Wilde. But in order to get married, I needed a job, and in order to get a job, I needed a Ph.D.

In 1965 I read about Penrose’s theorem that any body undergoing gravitational collapse must eventually form a singularity. I soon realized that if one reversed the direction of time in Penrose’s theorem, so that the collapse became an expansion, the conditions of his theorem would still hold, provided the universe were roughly like a Friedmann model on large scales at the present time. Penrose’s theorem had shown
that any collapsing star
must
end in a singularity; the time-reversed argument showed that any Friedmann-like expanding universe
must
have begun with a singularity. For technical reasons, Penrose’s theorem required that the universe be infinite in space. So I could in fact use it to prove that there should be a singularity only if the universe was expanding fast enough to avoid collapsing again (since only those Friedmann models were infinite in space).

During the next few years I developed new mathematical techniques to remove this and other technical conditions from the theorems that proved that singularities must occur. The final result was a joint paper by Penrose and myself in 1970, which at last proved that there must have been a big bang singularity provided only that general relativity is correct and the universe contains as much matter as we observe. There was a lot of opposition to our work, partly from the Russians because of their Marxist belief in scientific determinism, and partly from people who felt that the whole idea of singularities was repugnant and spoiled the beauty of Einstein’s theory. However, one cannot really argue with a mathematical theorem. So in the end our work became generally accepted and nowadays nearly everyone assumes that the universe started with a big bang singularity. It is perhaps ironic that, having changed my mind, I am now trying to convince other physicists that there was in fact no singularity at the beginning of the universe—as we shall see later, it can disappear once quantum effects are taken into account.

We have seen in this chapter how, in less than half a century, man’s view of the universe, formed over millennia, has been transformed. Hubble’s discovery that the universe was expanding, and the realization of the insignificance of our own planet in the vastness of the universe, were just the starting point. As experimental and theoretical evidence mounted, it became more and more clear that the universe must have had a beginning in time, until in 1970 this was finally proved by Penrose and myself, on the basis of Einstein’s general theory of relativity. That proof showed that general relativity is only
an incomplete theory: it cannot tell us how the universe started off, because it predicts that all physical theories, including itself, break down at the beginning of the universe. However, general relativity claims to be only a partial theory, so what the singularity theorems really show is that there must have been a time in the very early universe when the universe was so small that one could no longer ignore the small-scale effects of the other great partial theory of the twentieth century, quantum mechanics. At the start of the 1970s, then, we were forced to turn our search for an understanding of the universe from our theory of the extraordinarily vast to our theory of the extraordinarily tiny. That theory, quantum mechanics, will be described next, before we turn to the efforts to combine the two partial theories into a single quantum theory of gravity.

CHAPTER 4
THE
UNCERTAINTY
PRINCIPLE

T
he success of scientific theories, particularly Newton’s theory of gravity, led the French scientist the Marquis de Laplace at the beginning of the nineteenth century to argue that the universe was completely deterministic. Laplace suggested that there should be a set of scientific laws that would allow us to predict everything that would happen in the universe, if only we knew the complete state of the universe at one time. For example, if we knew the positions and speeds of the sun and the planets at one time, then we could use Newton’s laws to calculate the state of the Solar System at any other time. Determinism seems fairly obvious in this case, but Laplace went further to assume that there were similar laws governing everything else, including human behavior.

The doctrine of scientific determinism was strongly resisted by many people, who felt that it infringed God’s freedom to intervene in the world, but it remained the standard assumption of science until the early years of this century. One of the first indications that this belief would have to be abandoned came when calculations by the British
scientists Lord Rayleigh and Sir James Jeans suggested that a hot object, or body, such as a star, must radiate energy at an infinite rate. According to the laws we believed at the time, a hot body ought to give off electromagnetic waves (such as radio waves, visible light, or X rays) equally at all frequencies. For example, a hot body should radiate the same amount of energy in waves with frequencies between one and two million million waves a second as in waves with frequencies between two and three million million waves a second. Now since the number of waves a second is unlimited, this would mean that the total energy radiated would be infinite.

In order to avoid this obviously ridiculous result, the German scientist Max Planck suggested in 1900 that light, X rays, and other waves could not be emitted at an arbitrary rate, but only in certain packets that he called quanta. Moreover, each quantum had a certain amount of energy that was greater the higher the frequency of the waves, so at a high enough frequency the emission of a single quantum would require more energy than was available. Thus the radiation at high frequencies would be reduced, and so the rate at which the body lost energy would be finite.

The quantum hypothesis explained the observed rate of emission of radiation from hot bodies very well, but its implications for determinism were not realized until 1926, when another German scientist, Werner Heisenberg, formulated his famous uncertainty principle. In order to predict the future position and velocity of a particle, one has to be able to measure its present position and velocity accurately. The obvious way to do this is to shine light on the particle. Some of the waves of light will be scattered by the particle and this will indicate its position. However, one will not be able to determine the position of the particle more accurately than the distance between the wave crests of light, so one needs to use light of a short wavelength in order to measure the position of the particle precisely. Now, by Planck’s quantum hypothesis, one cannot use an arbitrarily small amount of light; one has to use at least one quantum. This quantum will disturb the
particle and change its velocity in a way that cannot be predicted. Moreover, the more accurately one measures the position, the shorter the wavelength of the light that one needs and hence the higher the energy of a single quantum. So the velocity of the particle will be disturbed by a larger amount. In other words, the more accurately you try to measure the position of the particle, the less accurately you can measure its speed, and vice versa. Heisenberg showed that the uncertainty in the position of the particle times the uncertainty in its velocity times the mass of the particle can never be smaller than a certain quantity, which is known as Planck’s constant. Moreover, this limit does not depend on the way in which one tries to measure the position or velocity of the particle, or on the type of particle: Heisenberg’s uncertainty principle is a fundamental, inescapable property of the world.

Other books

Golden Girl by Cathy Hopkins
The Ruins of California by Martha Sherrill
The Trouble With Tony by Easton, Eli
An Army at Dawn by Rick Atkinson
Murder in Megara by Eric Mayer
A Christmas to Believe In by Claire Ashgrove