A short history of nearly everything (24 page)

Read A short history of nearly everything Online

Authors: Bill Bryson

Tags: #General, #Essays, #Popular works, #Philosophy & Social Aspects, #Science, #Mathematics, #working

BOOK: A short history of nearly everything
11.39Mb size Format: txt, pdf, ePub

Particle physicists have tended to favor the particle explanation of WIMPs, astrophysicists the stellar explanation of MACHOs. For a time MACHOs had the upper hand, but not nearly enough of them were found, so sentiment swung back toward WIMPs but with the problem that no WIMP has ever been found. Because they are weakly interacting, they are (assuming they even exist) very hard to detect. Cosmic rays would cause too much interference. So scientists must go deep underground. One kilometer underground cosmic bombardments would be one millionth what they would be on the surface. But even when all these are added in, “two-thirds of the universe is still missing from the balance sheet,” as one commentator has put it. For the moment we might very well call them DUNNOS (for Dark Unknown Nonreflective Nondetectable Objects Somewhere).

Recent evidence suggests that not only are the galaxies of the universe racing away from us, but that they are doing so at a rate that is accelerating. This is counter to all expectations. It appears that the universe may not only be filled with dark matter, but with dark energy. Scientists sometimes also call it vacuum energy or, more exotically, quintessence. Whatever it is, it seems to be driving an expansion that no one can altogether account for. The theory is that empty space isn’t so empty at all—that there are particles of matter and antimatter popping into existence and popping out again—and that these are pushing the universe outward at an accelerating rate. Improbably enough, the one thing that resolves all this is Einstein’s cosmological constant—the little piece of math he dropped into the general theory of relativity to stop the universe’s presumed expansion, and called “the biggest blunder of my life.” It now appears that he may have gotten things right after all.

The upshot of all this is that we live in a universe whose age we can’t quite compute, surrounded by stars whose distances we don’t altogether know, filled with matter we can’t identify, operating in conformance with physical laws whose properties we don’t truly understand.

And on that rather unsettling note, let’s return to Planet Earth and consider something that wedo understand—though by now you perhaps won’t be surprised to hear that we don’t understand it completely and what we do understand we haven’t understood for long.

 

A Short History of Nearly Everything
CHAPTER 12: THE EARTH MOVES

IN ONE OF his last professional acts before his death in 1955, Albert Einstein wrote a short but glowing foreword to a book by a geologist named Charles Hapgood entitledEarth’s Shifting Crust: A Key to Some Basic Problems of Earth Science . Hapgood’s book was a steady demolition of the idea that continents were in motion. In a tone that all but invited the reader to join him in a tolerant chuckle, Hapgood observed that a few gullible souls had noticed “an apparent correspondence in shape between certain continents.” It would appear, he went on, “that South America might be fitted together with Africa, and so on. . . . It is even claimed that rock formations on opposite sides of the Atlantic match.”

Mr. Hapgood briskly dismissed any such notions, noting that the geologists K. E. Caster and J. C. Mendes had done extensive fieldwork on both sides of the Atlantic and had established beyond question that no such similarities existed. Goodness knows what outcrops Messrs. Caster and Mendes had looked at, beacuse in fact many of the rock formations on both sides of the Atlanticarethe same—not just very similar but the same.

This was not an idea that flew with Mr. Hapgood, or many other geologists of his day. The theory Hapgood alluded to was one first propounded in 1908 by an amateur American geologist named Frank Bursley Taylor. Taylor came from a wealthy family and had both the means and freedom from academic constraints to pursue unconventional lines of inquiry. He was one of those struck by the similarity in shape between the facing coastlines of Africa and South America, and from this observation he developed the idea that the continents had once slid around. He suggested—presciently as it turned out—that the crunching together of continents could have thrust up the world’s mountain chains. He failed, however, to produce much in the way of evidence, and the theory was considered too crackpot to merit serious attention.

In Germany, however, Taylor’s idea was picked up, and effectively appropriated, by a theorist named Alfred Wegener, a meteorologist at the University of Marburg. Wegener investigated the many plant and fossil anomalies that did not fit comfortably into the standard model of Earth history and realized that very little of it made sense if conventionally interpreted. Animal fossils repeatedly turned up on opposite sides of oceans that were clearly too wide to swim. How, he wondered, did marsupials travel from South America to Australia? How did identical snails turn up in Scandinavia and New England? And how, come to that, did one account for coal seams and other semi-tropical remnants in frigid spots like Spitsbergen, four hundred miles north of Norway, if they had not somehow migrated there from warmer climes?

Wegener developed the theory that the world’s continents had once come together in a single landmass he called Pangaea, where flora and fauna had been able to mingle, before the continents had split apart and floated off to their present positions. All this he put together in a book calledDie Entstehung der Kontinente und Ozeane , orThe Origin of Continents and Oceans , which was published in German in 1912 and—despite the outbreak of the First World War in the meantime—in English three years later.

Because of the war, Wegener’s theory didn’t attract much notice at first, but by 1920, when he produced a revised and expanded edition, it quickly became a subject of discussion. Everyone agreed that continents moved—but up and down, not sideways. The process of vertical movement, known as isostasy, was a foundation of geological beliefs for generations, though no one had any good theories as to how or why it happened. One idea, which remained in textbooks well into my own school days, was the baked apple theory propounded by the Austrian Eduard Suess just before the turn of the century. This suggested that as the molten Earth had cooled, it had become wrinkled in the manner of a baked apple, creating ocean basins and mountain ranges. Never mind that James Hutton had shown long before that any such static arrangement would eventually result in a featureless spheroid as erosion leveled the bumps and filled in the divots. There was also the problem, demonstrated by Rutherford and Soddy early in the century, that Earthly elements hold huge reserves of heat—much too much to allow for the sort of cooling and shrinking Suess suggested. And anyway, if Suess’s theory was correct then mountains should be evenly distributed across the face of the Earth, which patently they were not, and of more or less the same ages; yet by the early 1900s it was already evident that some ranges, like the Urals and Appalachians, were hundreds of millions of years older than others, like the Alps and Rockies. Clearly the time was ripe for a new theory. Unfortunately, Alfred Wegener was not the man that geologists wished to provide it.

For a start, his radical notions questioned the foundations of their discipline, seldom an effective way to generate warmth in an audience. Such a challenge would have been painful enough coming from a geologist, but Wegener had no background in geology. He was a meteorologist, for goodness sake. A weatherman—aGerman weatherman. These were not remediable deficiencies.

And so geologists took every pain they could think of to dismiss his evidence and belittle his suggestions. To get around the problems of fossil distributions, they posited ancient “land bridges” wherever they were needed. When an ancient horse namedHipparion was found to have lived in France and Florida at the same time, a land bridge was drawn across the Atlantic. When it was realized that ancient tapirs had existed simultaneously in South America and Southeast Asia a land bridge was drawn there, too. Soon maps of prehistoric seas were almost solid with hypothesized land bridges—from North America to Europe, from Brazil to Africa, from Southeast Asia to Australia, from Australia to Antarctica. These connective tendrils had not only conveniently appeared whenever it was necessary to move a living organism from one landmass to another, but then obligingly vanished without leaving a trace of their former existence. None of this, of course, was supported by so much as a grain of actual evidence—nothing so wrong could be—yet it was geological orthodoxy for the next half century.

Even land bridges couldn’t explain some things. One species of trilobite that was well known in Europe was also found to have lived on Newfoundland—but only on one side. No one could persuasively explain how it had managed to cross two thousand miles of hostile ocean but then failed to find its way around the corner of a 200-mile-wide island. Even more awkwardly anomalous was another species of trilobite found in Europe and the Pacific Northwest but nowhere in between, which would have required not so much a land bridge as a flyover. Yet as late as 1964 when theEncyclopaedia Britannica discussed the rival theories, it was Wegener’s that was held to be full of “numerous grave theoretical difficulties.”

To be sure, Wegener made mistakes. He asserted that Greenland is drifting west by about a mile a year, which is clearly nonsense. (It’s more like half an inch.) Above all, he could offer no convincing explanation for how the landmasses moved about. To believe in his theory you had to accept that massive continents somehow pushed through solid crust, like a plow through soil, without leaving any furrow in their wake. Nothing then known could plausibly explain what motored these massive movements.

It was Arthur Holmes, the English geologist who did so much to determine the age of the Earth, who suggested a possible way. Holmes was the first scientist to understand that radioactive warming could produce convection currents within the Earth. In theory these could be powerful enough to slide continents around on the surface. In his popular and influential textbookPrinciples of Physical Geology , first published in 1944, Holmes laid out a continental drift theory that was in its fundamentals the theory that prevails today. It was still a radical proposition for the time and widely criticized, particularly in the United States, where resistance to drift lasted longer than elsewhere. One reviewer there fretted, without any evident sense of irony, that Holmes presented his arguments so clearly and compellingly that students might actually come to believe them.

Elsewhere, however, the new theory drew steady if cautious support. In 1950, a vote at the annual meeting of the British Association for the Advancement of Science showed that about half of those present now embraced the idea of continental drift. (Hapgood soon after cited this figure as proof of how tragically misled British geologists had become.) Curiously, Holmes himself sometimes wavered in his conviction. In 1953 he confessed: “I have never succeeded in freeing myself from a nagging prejudice against continental drift; in my geological bones, so to speak, I feel the hypothesis is a fantastic one.”

Continental drift was not entirely without support in the United States. Reginald Daly of Harvard spoke for it, but he, you may recall, was the man who suggested that the Moon had been formed by a cosmic impact, and his ideas tended to be considered interesting, even worthy, but a touch too exuberant for serious consideration. And so most American academics stuck to the belief that the continents had occupied their present positions forever and that their surface features could be attributed to something other than lateral motions.

Interestingly, oil company geologists had known for years that if you wanted to find oil you had to allow for precisely the sort of surface movements that were implied by plate tectonics. But oil geologists didn’t write academic papers; they just found oil.

There was one other major problem with Earth theories that no one had resolved, or even come close to resolving. That was the question of where all the sediments went. Every year Earth’s rivers carried massive volumes of eroded material—500 million tons of calcium, for instance—to the seas. If you multiplied the rate of deposition by the number of years it had been going on, it produced a disturbing figure: there should be about twelve miles of sediments on the ocean bottoms—or, put another way, the ocean bottoms should by now be well above the ocean tops. Scientists dealt with this paradox in the handiest possible way. They ignored it. But eventually there came a point when they could ignore it no longer.

In the Second World War, a Princeton University mineralogist named Harry Hess was put in charge of an attack transport ship, the USSCape Johnson. Aboard this vessel was a fancy new depth sounder called a fathometer, which was designed to facilitate inshore maneuvers during beach landings, but Hess realized that it could equally well be used for scientific purposes and never switched it off, even when far out at sea, even in the heat of battle. What he found was entirely unexpected. If the ocean floors were ancient, as everyone assumed, they should be thickly blanketed with sediments, like the mud on the bottom of a river or lake. But Hess’s readings showed that the ocean floor offered anything but the gooey smoothness of ancient silts. It was scored everywhere with canyons, trenches, and crevasses and dotted with volcanic seamounts that he called guyots after an earlier Princeton geologist named Arnold Guyot. All this was a puzzle, but Hess had a war to take part in, and put such thoughts to the back of his mind.

After the war, Hess returned to Princeton and the preoccupations of teaching, but the mysteries of the seafloor continued to occupy a space in his thoughts. Meanwhile, throughout the 1950s oceanographers were undertaking more and more sophisticated surveys of the ocean floors. In so doing, they found an even bigger surprise: the mightiest and most extensive mountain range on Earth was—mostly—underwater. It traced a continuous path along the world’s seabeds, rather like the stitching on a baseball. If you began at Iceland, you could follow it down the center of the Atlantic Ocean, around the bottom of Africa, and across the Indian and Southern Oceans, below Australia; there it angled across the Pacific as if making for Baja California before shooting up the west coast of the United States to Alaska. Occasionally its higher peaks poked above the water as an island or archipelago—the Azores and Canaries in the Atlantic, Hawaii in the Pacific, for instance—but mostly it was buried under thousands of fathoms of salty sea, unknown and unsuspected. When all its branches were added together, the network extended to 46,600 miles.

Other books

Demand by Lisa Renee Jones
Blurred Boundaries by Lori Crawford
El Legado de Judas by Francesc Miralles y Joan Bruna
Vanilla On Top by C.J. Ellisson
Helping Hands by Laurie Halse Anderson
Team Mates by Alana Church
The Wonder of You by Susan May Warren