Read Ancient DNA: Methods and Protocols Online
Authors: Beth Shapiro
We express our sincere thanks to all authors for their willingness to share their time and their trade secrets, and to Prof. John Walker at Humana Press for giving us the opportunity to assemble this collection of protocols.
Santa Cruz, CA, USA
Beth Shapiro
York, UK
Michael Hofreiter
Contents
Preface
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
v
Contributors
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xi
1 Setting Up an Ancient DNA Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
Tara L. Fulton
2 A Phenol–Chloroform Protocol for Extracting DNA
from Ancient Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
Ross Barnett and Greger Larson
3 DNA Extraction of Ancient Animal Hard Tissue Samples
via Adsorption to Silica Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21
Nadin Rohland
4 Case Study: Recovery of Ancient Nuclear DNA from Toe Pads of the Extinct Passenger Pigeon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29
Tara L. Fulton, Stephen M. Wagner, and Beth Shapiro
5 Extraction of DNA from Paleofeces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
37
Melanie Kuch and Hendrik Poinar
6 DNA Extraction from Keratin and Chitin . . . . . . . . . . . . . . . . . . . . . . . . . . . .
43
Paula F. Campos and Thomas M.P. Gilbert
7 Case Study: Ancient Sloth DNA Recovered from Hairs
Preserved in Paleofeces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
51
Andrew A. Clack, Ross D.E. MacPhee, and Hendrik N. Poinar
8 Ancient DNA Extraction from Soils and Sediments . . . . . . . . . . . . . . . . . . . . .
57
James Haile
9 DNA Extraction from Fossil Eggshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
65
Charlotte L. Oskam and Michael Bunce
10 Ancient DNA Extraction from Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
71
Logan Kistler
11 DNA Extraction from Formalin-Fixed Material . . . . . . . . . . . . . . . . . . . . . . . .
81
Paula F. Campos and Thomas M.P. Gilbert
12 Case Study: Ancient DNA Recovered from Pleistocene-Age Remains of a Florida Armadillo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
87
Brandon Letts and Beth Shapiro
13 Nondestructive DNA Extraction from Museum Specimens . . . . . . . . . . . . . . .
93
Michael Hofreiter
14 Case Study: Using a Nondestructive DNA Extraction
Method to Generate mtDNA Sequences from Historical
Chimpanzee Specimens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Elmira Mohandesan, Stefan Prost, and Michael Hofreiter
ix
x
Contents
15 PCR Amplification, Cloning, and Sequencing of Ancient DNA . . . . . . . . . . . . 111
Tara L. Fulton and Mathias Stiller
16 Quantitative Real-Time PCR in aDNA Research . . . . . . . . . . . . . . . . . . . . . . . 121
Michael Bunce, Charlotte L. Oskam, and Morten E. Allentoft
17 Multiplex PCR Amplification of Ancient DNA . . . . . . . . . . . . . . . . . . . . . . . . 133
Mathias Stiller and Tara L. Fulton
18 Preparation of Next-Generation Sequencing Libraries
from Damaged DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Adrian W. Briggs and Patricia Heyn
19 Generating Barcoded Libraries for Multiplex
High-Throughput Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Michael Knapp, Mathias Stiller, and Matthias Meyer
20 Case Study: Targeted high-Throughput Sequencing of Mitochondrial Genomes from Extinct Cave Bears via Direct Multiplex
PCR Sequencing (DMPS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Mathias Stiller
21 Target Enrichment via DNA Hybridization Capture . . . . . . . . . . . . . . . . . . . . 177
Susanne Horn
22 Case Study: Enrichment of Ancient Mitochondrial DNA
by Hybridization Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Susanne Horn
23 Analysis of High-Throughput Ancient DNA Sequencing Data. . . . . . . . . . . . . 197
Martin Kircher
24 Phylogenetic Analysis of Ancient DNA using
BEAST
. . . . . . . . . . . . . . . . . . . . 229
Simon Y.W. Ho
Index
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
243
Contributors
ADRIAN W. BRIGGS
• Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston 02115 , MA , USA
ANDREW A. CLACK
• McMaster Ancient DNA Center, McMaster University , 1280 Main Street West Hamilton , ON , Canada L8S 4L9 ; Department of Biology , The Pennsylvania State University , 326 Mueller Laboratory, University Park , PA 16802 , USA
BETH SHAPIRO
• Department of Ecology and Evolutionary Biology , University of California Santa Cruz , A414 Earth & Marine Sciences, Santa Cruz , CA 95064 , USA
BRANDON LETTS
• Department of Biology , The Pennsylvania State University , 320 Mueller Laboratory, University Park , PA 16802 , USA CHARLOTTE L. OSKAM
• Ancient DNA Laboratory , School of Biological Sciences and Biotechnology, Murdoch University , South Street , Perth 6150 , WA , Australia ELMIRA MOHANDESAN
• Allan Wilson Centre for Molecular Ecology and Evolution, Institute of Natural Sciences, Massey University , Private Bag 102904 NSMC , Auckland , New Zealand
GREGER LARSON
• Department of Archaeology , Durham University , South Road, Durham DH1 3LE , UK
HENDRIK POINAR
• McMaster Ancient DNA Centre, McMaster University , Hamilton , ON , Canada
JAMES HAILE
• Ancient DNA Laboratory , School of Biological Sciences and Biotechnology, Murdoch University , South Street , Perth 6150 , WA , Australia LOGAN KISTLER
• Department of Anthropology , The Pennsylvania State University , 409 Carpenter Building, University Park , PA 16802 , USA MARTIN KIRCHER
• Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology , Deutscher Platz 6 , D-04103 Leipzig , Germany MATTHIAS MEYER
• Max Planck Institute for Evolutionary Anthropology , Deutscher Platz 6, 04103 Leipzig , Germany
MATHIAS STILLER
• Department of Biology , The Pennsylvania State University , 320 Mueller Laboratory , University Park , PA 16802 , USA MELANIE KUCH
• McMaster Ancient DNA Centre, McMaster University , Hamilton , ON , Canada
MICHAEL BUNCE
• Ancient DNA Laboratory , School of Biological Sciences and Biotechnology, Murdoch University , South Street, Perth 6150 , WA , Australia MICHAEL HOFREITER
• Department of Biology , The University of York , Wentworth Way, Heslington , York YO10 5DD , UK
MICHAEL KNAPP
• Allan Wilson Centre for Molecular Ecology and Evolution, Department of Anatomy and Structural Biology , University of Otago , Dunedin 9016 , New Zealand
xi
xii
Contributors
MORTEN E. ALLENTOFT
• Ancient DNA Laboratory , School of Biological Sciences and Biotechnology, Murdoch University , South Street , Perth 6150 , WA , Australia NADIN ROHLAND
• Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur, Boston , MA 02115 , USA PATRICIA HEYN
• Max Planck Institute of Molecular Cell Biology and Genetics , Pfotenhauerstrasse 108 , 01307 Dresden , Germany
PAULA F. CAMPOS
• Natural History Museum of Denmark, University of Copenhagen , Østervoldgade 5-7 1350 , Copenhagen , Denmark
ROSS BARNETT
• Department of Archaeology , Durham University , South Road , Durham DH1 3LE , UK
ROSS D. E. MACPHEE
• American Museum of Natural History , New York , NY 10024 , USA
SIMON Y. W. HO
• School of Biological Sciences, University of Sydney , Sydney, 2006 NSW , Australia
STEFAN PROST
• Allan Wilson Centre for Molecular Ecology and Evolution, Department of Anatomy and Structural Biology , University of Otago , Dunedin , New Zealand ; Department of Integrative Biology , University of California , Berkeley , CA , USA
SUSANNE HORN
• Max Planck Institute for Evolutionary Anthropology, Germany and German Cancer Research Center (DKFZ) , Heidelberg , Germany STEPHEN M. WAGNER
• Department of Biology , The Pennsylvania State University , 320 Mueller Laboratory , University Park , PA 16802 , USA TARA L. FULTON
• Department of Biology , The Pennsylvania State University , 320 Mueller Laboratory, University Park , PA 16802 , USA THOMAS M.P. GILBERT
• Natural History Museum of Denmark, University of Copenhagen , Østervoldgade 5-7, DK 1350 , Copenhagen , Denmark
Setting Up an Ancient DNA Laboratory
Tara L. Fulton
Abstract
Entering into the world of ancient DNA research is nontrivial. Because the DNA in most ancient specimens is degraded to some extent, the potential for contamination of ancient samples and DNA extracts with modern DNA is considerable. To minimize the risk associated with working with ancient DNA, experimental protocols specifi c to handling ancient specimens have been introduced. Here, I outline the challenges associated with working with ancient DNA and describe guidelines for setting up a new ancient DNA laboratory. I also discuss steps that can be taken at the sample collection and preparation stage to minimize the potential for contamination with exogenous sources of DNA.
Key words:
Ancient DNA , aDNA , DNA damage , Laboratory setup , Contamination , Subsampling , Sample preparation , Guidelines
1. Introduction
The fi eld of ancient DNA (aDNA) was born in 1984, when DNA sequences were successfully recovered from the extinct quagga, a relative of the zebra
( 1 )
. With the advent of the polymerase chain reaction (PCR)
( 2 )
, the fi eld began to take shape
( 3
) and has taken off during the last two decades. The power of aDNA is that it offers a window into the past that modern DNA or paleontological studies alone cannot provide. It has been widely adopted to address questions relating to, for example, the history and relationships of hominids
( 4
)
, plant and animal domestication ( 5– 8 )
, population dynamics and diversity through time
( 9– 13
) , and phylogenetics of extinct species
( 14– 16 )
. While aDNA can be a powerful tool, it is one that should be handled with caution.
Beth Shapiro and Michael Hofreiter (eds.),
Ancient DNA: Methods and Protocols
, Methods in Molecular Biology, vol. 840, DOI 10.1007/978-1-61779-516-9_1, © Springer Science+Business Media, LLC 2012
1
2
T.L. Fulton
1.1. Diffi culties
DNA is frequently damaged while the organism is alive, but this
of aDNA Work
damage is repaired via a suite of host repair mechanisms. DNA damage continues after death, but the repair pathways no longer 1.1.1. Postmortem
function. As a result, few intact copies of aDNA tend to survive in Degradation
old specimens, and those that remain are often highly fragmented and damaged (T
able 1
). Preservation in cold environments may slow or inhibit nuclease activity, reducing some of the damage that occurs immediately after death. However, environmental factors still work to cause DNA damage. Hydrolytic damage leads to single-strand breaks through direct cleavage or following depuri-nation, fragmenting the DNA. Hydrolysis can also induce miscoding lesions, most commonly the deamination of cytosine to uracil,
causing C–T transitions ( 17
)
. Oxidation can induce lesions ( 17,
18 )
that block polymerases and either stop amplifi cation or lead to
“jumping PCR” ( 3
) and the production of chimeric sequences.
Table 1
Types of ancient DNA damage
Damage type
Mechanisms
Effects
Solutions
Strand breaks Nuclease activity
Low quantity of
Amplify short
Microorganism degradation
surviving DNA;
(<100–300 bp)
Desiccation, heat, chemicals,
etc.
short fragment
overlapping fragments
Direct cleavage (hydrolysis)
length
Depurination causes a basic
site (hydrolysis)
Miscoding
Deamination causes