From Eternity to Here (22 page)

Read From Eternity to Here Online

Authors: Sean Carroll

Tags: #Science

BOOK: From Eternity to Here
3.47Mb size Format: txt, pdf, ePub

How can the two clocks continue to agree with each other, when we previously said that the clock that moved and came back would have experienced less elapsed time? Easy—the clocks appear to differ when we look at them as an external observer, but they appear to match when we look at them through the wormhole. This puzzling phenomenon has a simple explanation: Once the two wormhole mouths move on different paths through spacetime, the identification between them is no longer at the same time from the background point of view. The sphere representing one mouth is still identified with the sphere representing the other mouth, but now they are identified
at different times
. By passing through one, you move into the past, as far as the background time is concerned; by passing through in the opposite direction, you move into the future.

Figure 30:
A wormhole time machine. Double-sided arrows represent identifications between the spherical wormhole mouths. The two mouths start nearby, identified at equal background times. One remains stationary, while the other moves away and returns near the speed of light, so that they become identified at very different background times.

This kind of wormhole, therefore, is exactly like the gate into yesterday. By manipulating the ends of a wormhole with a short throat, we have connected two different regions of spacetime with very different times. Once we’ve done that, it’s easy enough to travel through the wormhole in such a way as to describe a closed timelike curve, and all of the previous worries about paradoxes apply. This procedure, if it could be carried out in the real world, would unambiguously count as “building a time machine” by the standards of our earlier discussion.

PROTECTION AGAINST TIME MACHINES

The wormhole time machines make it sound somewhat plausible that closed timelike curves could exist in the real world. The problem seemingly becomes one of technological ability, rather than restrictions placed by the laws of physics; all we need is to find a wormhole, keep it open, move one of the mouths in the right way . . . Well, perhaps it’s not completely plausible after all. As one might suspect, there turn out to be a number of good reasons to believe that wormholes don’t provide a very practical route to building time machines.

First, wormholes don’t grow on trees. In 1967, theoretical physicist Robert Geroch investigated the question of wormhole construction, and he showed that you actually could create a wormhole by twisting spacetime in the appropriate way—but only if, as an intermediate step in the process, you created a closed timelike curve. In other words, the first step to building a time machine by manipulating a wormhole is to build a time machine so that you can make a wormhole.
100
But even if you were lucky enough to stumble across a wormhole, you’d be faced with the problem of keeping it open. Indeed, this difficulty is recognized as the single biggest obstacle to the plausibility of the wormhole time machine idea.

The problem is that keeping a wormhole open requires negative energies. Gravity is attractive: The gravitational field caused by an ordinary positive-energy object works to pull things together. But look back at Figure 29 and see what the wormhole does to a collection of particles that pass through it—it “defocuses” them, taking particles that were initially coming together and now pushing them apart. That’s the opposite of gravity’s conventional behavior, and a sign that negative energies must be involved.

Do negative energies exist in Nature? Probably not, at least not in the ways necessary to sustain a macroscopic wormhole—but we can’t say for sure. Some people have proposed ideas for using quantum mechanics to create pockets of negative energy, but they’re not on a very firm footing. A big hurdle is that the question necessarily involves both gravity and quantum mechanics, and the intersection of those two theories is not very well understood.

As if that weren’t enough to worry about, even if we found a wormhole and knew a way to keep it open, chances are that it would be unstable—the slightest disturbance would send it collapsing into a black hole. This is another question for which it’s hard to find a clear-cut answer, but the basic idea is that any tiny ripple in energy can zoom around a closed timelike curve an arbitrarily large number of times. Our best current thinking is that this kind of repeat journey is inevitable, at least for some small fluctuations. So the wormhole doesn’t just feel the mass of a single speck of dust passing through—it feels that effect over and over again, creating an enormous gravitational field, enough to ultimately destroy our would-be time machine.

Nature, it seems, tries very hard to stop us from building a time machine. The accumulated circumstantial evidence prompted Stephen Hawking to propose what he calls the “Chronology Protection Conjecture”: The laws of physics (whatever they may be) prohibit the creation of closed timelike curves.
101
We have a lot of evidence that something along those lines is true, even if we fall short of a definitive proof.

Time machines fascinate us, in part because they seem to open the door to paradoxes and challenge our notions of free will. But it’s likely that they don’t exist, so the problems they present aren’t the most pressing (unless you’re a Hollywood screenwriter). The arrow of time, on the other hand, is indisputably a feature of the real world, and the problems it presents demand an explanation. The two phenomena are related; there can be a consistent arrow of time throughout the observable universe only because there are no closed timelike curves, and many of the disconcerting properties of closed timelike curves arise from their incompatibility with the arrow of time. The absence of time machines is necessary for a consistent arrow of time, but it’s by no means sufficient to explain it. Having laid sufficient groundwork, it’s time to confront the mystery of time’s direction head-on.

PART THREE

ENTROPY AND TIME’S ARROW

7

RUNNING TIME BACKWARD

This is what I mean when I say I would like to swim against the stream of time: I would like to erase the consequences of certain events and restore an initial condition.

—Italo Calvino, If on a Winter’s Night a Traveler

 

 

 

Pierre-Simon Laplace was a social climber at a time when social climbing was a risky endeavor.
102
When the French Revolution broke out, Laplace had established himself as one of the greatest mathematical minds in Europe, as he would frequently remind his colleagues at the Académie des Sciences. In 1793 the Reign of Terror suppressed the Académie; Laplace proclaimed his Republican sympathies, but he also moved out of Paris just to be safe. (Not without reason; his colleague Antoine Lavoisier, the father of modern chemistry, was sent to the guillotine in 1794.) He converted to Bonapartism when Napoleon took power, and dedicated his
Théorie Analytique des Probabilités
to the emperor. Napoleon gave Laplace a position as minister of the interior, but he didn’t last very long—something about being too abstract-minded. After the restoration of the Bourbons, Laplace became a Royalist, and omitted the dedication to Napoleon from future editions of his book. He was named a marquis in 1817.

Social ambitions notwithstanding, Laplace could be impolitic when it came to his science. A famous anecdote concerns his meeting with Napoleon, after he had asked the emperor to accept a copy of his
Méchanique Céleste
—a five-volume treatise on the motions of the planets. It seems unlikely that Napoleon read the whole thing (or any of it), but someone at court did let him know that the name of God was entirely absent. Napoleon took the opportunity to mischievously ask, “M. Laplace, they tell me you have written this large book on the system of the universe, and have never even mentioned its Creator.” To which Laplace answered stubbornly, “I had no need of that hypothesis.”
103

Figure 31:
Pierre-Simon Laplace, mathematician, physicist, swerving politician, and unswerving determinist.

One of the central tenets of Laplace’s philosophy was determinism. It was Laplace who truly appreciated the implications of Newtonian mechanics for the relationship between the present and the future: Namely, if you understood everything about the present, the future would be absolutely determined. As he put it in the introduction to his essay on probability:

We may regard the present state of the universe as the effect of its past and the cause of its future. An intellect which at a certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect were also vast enough to submit these data to analysis, it would embrace in a single formula the movements of the greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past would be present before its eyes.
104

These days we would probably say that a sufficiently powerful computer could, given all there was to know about the present universe, predict the future (and retrodict the past) with perfect accuracy. Laplace didn’t know about computers, so he imagined a vast intellect. His later biographers found this a bit dry, so they attached a label to this hypothetical intellect:
Laplace’s Demon
.

Laplace never called it a demon, of course; presumably he had no need to hypothesize demons any more than gods. But the idea captures some of the menace lurking within the pristine mathematics of Newtonian physics. The future is not something that has yet to be determined; our fate is encoded in the details of the current universe. Every moment of the past and future is fixed by the present. It’s just that we don’t have the resources to perform the calculation.
105

There is a deep-seated impulse within all of us to resist the implications of Laplace’s Demon. We don’t want to believe that the future is determined, even if someone out there did have access to the complete state of the universe. Tom Stoppard’s
Arcadia
once again expresses this anxiety in vivid terms.

VALENTINE: Yes. There was someone, forget his name, 1820s, who pointed out that from Newton’s laws you could predict everything to come—I mean, you’d need a computer as big as the universe but the formula would exist.
CHLOË: But it doesn’t work, does it?
VALENTINE: No. It turns out the maths is different.
CHLOË: No, it’s all because of sex.
VALENTINE: Really?
CHLOË: That’s what I think. The universe is deterministic all right, just like Newton said, I mean it’s trying to be, but the only thing going wrong is people fancying other people who aren’t supposed to be in that part of the plan.
VALENTINE: Ah. The attraction Newton left out. All the way back to the apple in the garden. Yes. (Pause.) Yes, I think you’re the first person to think of this.
106

We won’t be exploring whether sexual attraction helps us wriggle free of the iron grip of determinism. Our concern is with why the past seems so demonstrably different from the future. But that wouldn’t be nearly the puzzle it appears to be if it weren’t for the fact that the underlying laws of physics seem perfectly reversible; as far as Laplace’s Demon is concerned, there’s no difference between reconstructing the past and predicting the future.

Other books

Until the End of the World (Book 1) by Fleming, Sarah Lyons
Crossing the Lines by Barber, M.Q.
An Amish Country Christmas by Hubbard, Charlotte; King, Naomi
Another Taste of Destiny by Barrymire, Lea
Act of Fear by Dennis Lynds
Last Call by David Lee
Family Tree by SUSAN WIGGS
Spying in High Heels by Gemma Halliday
Watching Amanda by Janelle Taylor