Authors: Rachel Carson
Beginning in August 1954, screw-worms reared and sterilized in an Agriculture Department laboratory in Florida were flown to Curaçao and released from airplanes at the rate of about 400 per square mile per week. Almost at once the number of egg masses deposited on experimental goats began to decrease, as did their fertility. Only seven weeks after the releases were started, all eggs were infertile. Soon it was impossible to find
a single egg mass, sterile or otherwise. The screw-worm had indeed been eradicated on Curaçao.
The resounding success of the Curaçao experiment whetted the appetites of Florida livestock raisers for a similar feat that would relieve them of the scourge of screw-worms. Although the difficulties here were relatively enormousâan area 300 times as large as the small Caribbean islandâin 1957 the United States Department of Agriculture and the State of Florida joined in providing funds for an eradication effort. The project involved the weekly production of about 50 million screw-worms at a specially constructed "fly factory," the use of 20 light airplanes to fly pre-arranged flight patterns, five to six hours daily, each plane carrying a thousand paper cartons, each carton containing 200 to 400 irradiated flies.
The cold winter of 1957â58, when freezing temperatures gripped northern Florida, gave an unexpected opportunity to start the program while the screw-worm populations were reduced and confined to a small area. By the time the program was considered complete at the end of 17 months, 3% billion artificially reared, sterilized flies had been released over Florida and sections of Georgia and Alabama. The last-known animal wound infestation that could be attributed to screw-worms occurred in February 1959. In the next few weeks several adults were taken in traps. Thereafter no trace of the screw-worm could be discovered. Its extinction in the Southeast had been accomplishedâa triumphant demonstration of the worth of scientific creativity, aided by thorough basic research, persistence, and determination.
Now a quarantine barrier in Mississippi seeks to prevent the re-entrance of the screw-worm from the Southwest, where it is firmly entrenched. Eradication there would be a formidable undertaking, considering the vast areas involved and the probability of re-invasion from Mexico. Nevertheless, the stakes are high and the thinking in the Department seems to be that some
sort of program, designed at least to hold the screw-worm populations at very low levels, may soon be attempted in Texas and other infested areas of the Southwest.
The brilliant success of the screw-worm campaign has stimulated tremendous interest in applying the same methods to other insects. Not all, of course, are suitable subjects for this technique, much depending on details of the life history, population density, and reactions to radiation.
Experiments have been undertaken by the British in the hope that the method could be used against the tsetse fly in Rhodesia. This insect infests about a third of Africa, posing a menace to human health and preventing the keeping of livestock in an area of some 4½ million square miles of wooded grasslands. The habits of the tsetse differ considerably from those of the screw-worm fly, and although it can be sterilized by radiation some technical difficulties remain to be worked out before the method can be applied.
The British have already tested a large number of other species for susceptibility to radiation. United States scientists have had some encouraging early results with the melon fly and the oriental and Mediterranean fruit flies in laboratory tests in Hawaii and field tests on the remote island of Rota. The corn borer and the sugarcane borer are also being tested. There are possibilities, too, that insects of medical importance might be controlled by sterilization. A Chilean scientist has pointed out that malaria-carrying mosquitoes persist in his country in spite of insecticide treatment; the release of sterile males might then provide the final blow needed to eliminate this population.
The obvious difficulties of sterilizing by radiation have led to search for an easier method of accomplishing similar results, and there is now a strongly running tide of interest in chemical sterilants.
Scientists at the Department of Agriculture laboratory in Orlando, Florida, are now sterilizing the housefly in laboratory
experiments and even in some field trials, using chemicals incorporated in suitable foods. In a test on an island in the Florida Keys in 1961, a population of flies was nearly wiped out within a period of only five weeks. Repopulation of course followed from nearby islands, but as a pilot project the test was successful. The Department's excitement about the promise of this method is easily understood. In the first place, as we have seen, the housefly has now become virtually uncontrollable by insecticides. A completely new method of control is undoubtedly needed. One of the problems of sterilization by radiation is that this requires not only artificial rearing but the release of sterile males in larger number than are present in the wild population. This could be done with the screw-worm, which is actually not an abundant insect. With the housefly, however, more than doubling the population through releases could be highly objectionable, even though the increase would be only temporary. A chemical sterilant, on the other hand, could be combined with a bait substance and introduced into the natural environment of the fly; insects feeding on it would become sterile and in the course of time the sterile flies would predominate and the insects would breed themselves out of existence.
The testing of chemicals for a sterilizing effect is much more difficult than the testing of chemical poisons. It takes 30 days to evaluate one chemicalâalthough, of course, a number of tests can be run concurrently. Yet between April 1958 and December 1961 several hundred chemicals were screened at the Orlando laboratory for a possible sterilizing effect. The Department of Agriculture seems happy to have found among these even a handful of chemicals that show promise.
Now other laboratories of the Department are taking up the problem, testing chemicals against stable flies, mosquitoes, boll weevils, and an assortment of fruit flies. All this is presently experimental but in the few years since work began on chemosterilants the project has grown enormously. In theory it has
many attractive features. Dr. Knipling has pointed out that effective chemical insect sterilization "might easily outdo some of the best of known insecticides." Take an imaginary situation in which a population of a million insects is multiplying five times in each generation. An insecticide might kill 90 per cent of each generation, leaving 125,000 insects alive after the third generation. In contrast, a chemical that would produce 90 per cent sterility would leave only 125 insects alive.
On the other side of the coin is the fact that some extremely potent chemicals are involved. It is fortunate that at least during these early stages most of the men working with chemosterilants seem mindful of the need to find safe chemicals and safe methods of application. Nonetheless, suggestions are heard here and there that these sterilizing chemicals might be applied as aerial spraysâfor example, to coat the foliage chewed by gypsy moth larvae. To attempt any such procedure without thorough advance research on the hazards involved would be the height of irresponsibility. If the potential hazards of the chemosterilants are not constantly borne in mind we could easily find ourselves in even worse trouble than that now created by the insecticides.
The sterilants currently being tested fall generally into two groups, both of which are extremely interesting in their mode of action. The first are intimately related to the life processes, or metabolism, of the cell; i.e., they so closely resemble a substance the cell or tissue needs that the organism "mistakes" them for the true metabolite and tries to incorporate them in its normal building processes. But the fit is wrong in some detail and the process comes to a halt. Such chemicals are called antimetabolites.
The second group consists of chemicals that act on the chromosomes, probably affecting the gene chemicals and causing the chromosomes to break up. The chemosterilants of this group are alkylating agents, which are extremely reactive chemicals, capable of intense cell destruction, damage to chromosomes, and production of mutations. It is the view of Dr. Peter Alexander of the Chester Beatty Research Institute in London that "any alkylating agent which is effective in sterilizing insects would also be a powerful mutagen and carcinogen." Dr. Alexander feels that any conceivable use of such chemicals in insect control would be "open to the most severe objections." It is to be hoped, therefore, that the present experiments will lead not to actual use of these particular chemicals but to the discovery of others that will be safe and also highly specific in their action on the target insect.
Some of the most interesting of the recent work is concerned with still other ways of forging weapons from the insect's own life processes. Insects produce a variety of venoms, attractants, repellants. What is the chemical nature of these secretions? Could we make use of them as, perhaps, very selective insecticides? Scientists at Cornell University and elsewhere are trying to find answers to some of these questions, studying the defense mechanisms by which many insects protect themselves from attack by predators, working out the chemical structure of insect secretions. Other scientists are working on the so-called "juvenile hormone," a powerful substance which prevents metamorphosis of the larval insect until the proper stage of growth has been reached.
Perhaps the most immediately useful result of this exploration of insect secretion is the development of lures, or attractants. Here again, nature has pointed the way. The gypsy moth is an especially intriguing example. The female moth is too heavy-bodied to fly. She lives on or near the ground, fluttering about among low vegetation or creeping up tree trunks. The male, on the contrary, is a strong flier and is attracted even from considerable distances by a scent released by the female from special glands. Entomologists have taken advantage of this fact for a good many years, laboriously preparing this sex attractant from
the bodies of the female moths. It was then used in traps set for the males in census operations along the fringe of the insect's range. But this was an extremely expensive procedure. Despite the much publicized infestations in the northeastern states, there were not enough gypsy moths to provide the material, and hand-collected female pupae had to be imported from Europe, sometimes at a cost of half a dollar per tip. It was a tremendous breakthrough, therefore, when, after years of effort, chemists of the Agriculture Department recently succeeded in isolating the attractant. Following upon this discovery was the successful preparation of a closely related synthetic material from a constituent of castor oil; this not only deceives the male moths but is apparently fully as attractive as the natural substance. As little as one microgram (1/1,000,000 gram) in a trap is an effective lure.
All this is of much more than academic interest, for the new and economical "gyplure" might be used not merely in census operations but in control work. Several of the more attractive possibilities are now being tested. In what might be termed an experiment in psychological warfare, the attractant is combined with a granular material and distributed by planes. The aim is to confuse the male moth and alter the normal behavior so that, in the welter of attractive scents, he cannot find the true scent trail leading to the female. This line of attack is being carried even further in experiments aimed at deceiving the male into attempting to mate with a spurious female. In the laboratory, male gypsy moths have attempted copulation with chips of wood, vermiculite, and other small, inanimate objects, so long as they were suitably impregnated with gyplure. Whether such diversion of the mating instinct into nonproductive channels would actually serve to reduce the population remains to be tested, but it is an interesting possibility.
The gypsy moth lure was the first insect sex attractant to be synthesized, but probably there will soon be others. A number
of agricultural insects are being studied for possible attractants that man could imitate. Encouraging results have been obtained with the Hessian fly and the tobacco hornworm.
Combinations of attractants and poisons are being tried against several insect species. Government scientists have developed an attractant called methyl-eugenol, which males of the oriental fruit fly and the melon fly find irresistible. This has been combined with a poison in tests in the Bonin Islands 450 miles south of Japan. Small pieces of fiberboard were impregnated with the two chemicals and were distributed by air over the entire island chain to attract and kill the male flies. This program of "male annihilation" was begun in 1960: a year later the Agriculture Department estimated that more than 99 per cent of the population had been eliminated. The method as here applied seems to have marked advantages over the conventional broadcasting of insecticides. The poison, an organic phosphorus chemical, is confined to squares of fiberboard which are unlikely to be eaten by wildlife; its residues, moreover, are quickly dissipated and so are not potential contaminants of soil or water.
But not all communication in the insect world is by scents that lure or repel. Sound also may be a warning or an attraction. The constant stream of ultrasonic sound that issues from a bat in flight (serving as a radar system to guide it through darkness) is heard by certain moths, enabling them to avoid capture. The wing sounds of approaching parasitic flies warn the larvae of some sawflies to herd together for protection. On the other hand, the sounds made by certain wood-boring insects enable their parasites to find them, and to the male mosquito the wing-beat of the female is a siren song.
What use, if any, can be made of this ability of the insect to detect and react to sound? As yet in the experimental stage, but nonetheless interesting, is the initial success in attracting male mosquitoes to playback recordings of the flight sound of the female. The males were lured to a charged grid and so killed. The repellant effect of bursts of ultrasonic sound is being tested in Canada against corn borer and cutworm moths. Two authorities on animal sound, Professors Hubert and Mable Frings of the University of Hawaii, believe that a field method of influencing the behavior of insects with sound only awaits discovery of the proper key to unlock and apply the vast existing knowledge of insect sound production and reception. Repellant sounds may offer greater possibilities than attractants. The Fringses are known for their discovery that starlings scatter in alarm before a recording of the distress cry of one of their fellows; perhaps somewhere in this fact is a central truth that may be applied to insects. To practical men of industry the possibilities seem real enough so that at least one major electronic corporation is preparing to set up a laboratory to test them.