Read Superintelligence: Paths, Dangers, Strategies Online

Authors: Nick Bostrom

Tags: #Science, #Philosophy, #Non-Fiction

Superintelligence: Paths, Dangers, Strategies (32 page)

BOOK: Superintelligence: Paths, Dangers, Strategies
7.49Mb size Format: txt, pdf, ePub
ads

There are reasons other than fluctuations in demand why employers or owners of emulations might want to “kill” or “end” their workers frequently.
18
If an emulation mind, like a biological mind, requires periods of rest and sleep in order to function, it might be cheaper to erase a fatigued emulation at the end of a day and replace it with a stored state of a fresh and rested emulation. As this procedure would cause retrograde amnesia for everything that had been learned during that day, emulations performing tasks requiring long cognitive threads would be spared such frequent erasure. It would be difficult, for example, to write a book if each morning when one sat down at one’s desk, one had no memory of what one had done before. But other jobs could be performed adequately by agents that are frequently recycled: a shop assistant or a customer service agent, once trained, may only need to remember new information for twenty minutes.

Since recycling emulations would prevent memory and skill formation, some emulations may be placed on a special learning track where they would run continuously, including for rest and sleep, even in jobs that do not strictly require long cognitive threads. For example, some customer service agents might run for many years in optimized learning environments, assisted by coaches and performance evaluators. The best of these trainees would then be used like studs, serving as templates from which millions of fresh copies are stamped out each day. Great
effort would be poured into improving the performance of such worker templates, because even a small increment in productivity would yield great economic value when applied in millions of copies.

In parallel with efforts to train worker-templates for particular jobs, intense efforts would also be made to improve the underlying emulation technology. Advances here would be even more valuable than advances in individual worker-templates, since general technology improvements could be applied to all emulation workers (and potentially to non-worker emulations also) rather than only to those in a particular occupation. Enormous resources would be devoted to finding computational shortcuts allowing for more efficient implementations of existing emulations, and also into developing neuromorphic and entirely synthetic AI architectures. This research would probably mostly be done by emulations running on very fast hardware. Depending on the price of computer power, millions, billions, or trillions of emulations of the sharpest human research minds (or enhanced versions thereof) may be working around the clock on advancing the frontier of machine intelligence; and some of these may be operating orders of magnitude faster than biological brains.
19
This is a good reason for thinking that the era of human-like emulations would be brief—a
very
brief interlude in sidereal time—and that it would soon give way to an era of greatly superior artificial intelligence.

We have already encountered several reasons why employers of emulation workers may periodically cull their herds: fluctuations in demand for different kinds of laborers, cost savings of not having to emulate rest and sleep time, and the introduction of new and improved templates. Security concerns might furnish another reason. To prevent workers from developing subversive plans and conspiracies, emulations in some sensitive positions might be run only for limited periods, with frequent resets to an earlier stored ready-state.
20

These ready-states to which emulations would be reset would be carefully prepared and vetted. A typical short-lived emulation might wake up in a well-rested mental state that is optimized for loyalty and productivity. He remembers having graduated top of his class after many (subjective) years of intense training and selection, then having enjoyed a restorative holiday and a good night’s sleep, then having listened to a rousing motivational speech and stirring music, and now he is champing at the bit to finally get to work and to do his utmost for his employer. He is not overly troubled by thoughts of his imminent death at the end of the working day. Emulations with death neuroses or other hang-ups are less productive and would not have been selected.
21

Would maximally efficient work be fun?
 

One important variable in assessing the desirability of a hypothetical condition like this is the hedonic state of the average emulation.
22
Would a typical emulation worker be suffering or would he be enjoying the experience of working hard on the task at hand?

We must resist the temptation to project our own sentiments onto the imaginary emulation worker. The question is not whether
you
would feel happy if you had to work constantly and never again spend time with your loved ones—a terrible fate, most would agree.

It is moderately more relevant to consider the current human average hedonic experience during working hours. Worldwide studies asking respondents how happy they are find that most rate themselves as “quite happy” or “very happy” (averaging 3.1 on a scale from 1 to 4).
23
Studies on average affect, asking respondents how frequently they have recently experienced various positive or negative affective states, tend to get a similar result (producing a net affect of about 0.52 on a scale from –1 to 1). There is a modest positive effect of a country’s per capita income on average subjective well-being.
24
However, it is hazardous to extrapolate from these findings to the hedonic state of future emulation workers. One reason that could be given for this is that their condition would be so different: on the one hand, they might be working much harder; on the other hand, they might be free from diseases, aches, hunger, noxious odors, and so forth. Yet such considerations largely miss the mark. The much more important consideration here is that hedonic tone would be easy to adjust through the digital equivalent of drugs or neurosurgery. This means that it would be a mistake to infer the hedonic state of future emulations from the external conditions of their lives by imagining how we ourselves and other people like us would feel in those circumstances. Hedonic state would be a matter of choice. In the model we are currently considering, the choice would be made by capital-owners seeking to maximize returns on their investment in emulation-workers. Consequently, the question of how happy emulations would feel boils down to the question of which hedonic states would be most productive (in the various jobs that emulations would be employed to do).

Here, again, one might seek to draw an inference from observations about human happiness. If it is the case, across most times, places, and occupations, that people are typically at least moderately happy, this would create some presumption in favor of the same holding in a post-transition scenario like the one we are considering. To be clear, the argument in this case would not be that human minds have a predisposition towards happiness so they would probably find satisfaction under these novel conditions; but rather that a certain average level of happiness has proved adaptive for human minds in the past so maybe a similar level of happiness will prove adaptive for human-like minds in the future. Yet this formulation also reveals the weakness of the inference: to wit, that the mental dispositions that were adaptive for hunter–gatherer hominids roaming the African savanna may not necessarily be adaptive for modified emulations living in post-transition virtual realities. We can certainly
hope
that the future emulation-workers would be as happy as, or happier than, typical workers were in human history; but we have yet to see any compelling reason for supposing it would be so (in the laissez-faire multipolar scenario currently under examination).

Consider the possibility that the reason happiness is prevalent among humans (to whatever limited extent it is prevalent) is that cheerful mood served a signaling
function in the environment of evolutionary adaptedness. Conveying the impression to other members of the social group of being in flourishing condition—in good health, in good standing with one’s peers, and in confident expectation of continued good fortune—may have boosted an individual’s popularity. A bias toward cheerfulness could thus have been selected for, with the result that human neurochemistry is now biased toward positive affect compared to what would have been maximally efficient according to simpler materialistic criteria. If this were the case, then the future of
joie de vivre
might depend on cheer retaining its social signaling function unaltered in the post-transition world: an issue to which we will return shortly.

What if glad souls dissipate more energy than glum ones? Perhaps the joyful are more prone to creative leaps and flights of fancy—behaviors that future employers might disprize in most of their workers. Perhaps a sullen or anxious fixation on simply getting on with the job without making mistakes will be the productivity-maximizing attitude in most lines of work. The claim here is not that this is so, but that we do not know that it is not so. Yet we should consider just how bad it could be if some such pessimistic hypothesis about a future Malthusian state turned out to be true: not only because of the opportunity cost of having failed to create something better—which would be enormous—but also because the state could be bad in itself, possibly far worse than the original Malthusian state.

We seldom put forth full effort. When we do, it is sometimes painful. Imagine running on a treadmill at a steep incline—heart pounding, muscles aching, lungs gasping for air. A glance at the timer: your next break, which will also be your death, is due in 49 years, 3 months, 20 days, 4 hours, 56 minutes, and 12 seconds. You wish you had not been born.

Again the claim is not that this is how it would be, but that we do not know that it is not. One could certainly make a more optimistic case. For example, there is no obvious reason that emulations would need to suffer bodily injury and sickness: the elimination of physical wretchedness would be a great improvement over the present state of affairs. Furthermore, since such stuff as virtual reality is made of can be fairly cheap, emulations may work in sumptuous surroundings—in splendid mountaintop palaces, on terraces set in a budding spring forest, or on the beaches of an azure lagoon—with just the right illumination, temperature, scenery and décor; free from annoying fumes, noises, drafts, and buzzing insects; dressed in comfortable clothing, feeling clean and focused, and well nourished. More significantly, if—as seems perfectly possible—the optimum human mental state for productivity in most jobs is one of joyful eagerness, then the era of the emulation economy could be quite paradisiacal.

There would, in any case, be a great option value in arranging matters in such a manner that somebody or something could intervene to set things right if the default trajectory should happen to veer toward dystopia. It could also be desirable to have some sort of escape hatch that would permit bailout into death and oblivion if the quality of life were to sink permanently below the level at which annihilation becomes preferable to continued existence.

Unconscious outsourcers?
 

In the longer run, as the emulation era gives way to an artificial intelligence era (or if machine intelligence is attained directly via AI without a preceding whole brain emulation stage) pain and pleasure might possibly disappear entirely in a multipolar outcome, since a hedonic reward mechanism may not be the most effective motivation system for an complex artificial agent (one that, unlike the human mind, is not burdened with the legacy of animal wetware). Perhaps a more advanced motivation system would be based on an explicit representation of a utility function or some other architecture that has no exact functional analogs to pleasure and pain.

A related but slightly more radical multipolar outcome—one that could involve the elimination of almost all value from the future—is that the universal proletariat would not even be conscious. This possibility is most salient with respect to AI, which might be structured very differently than human intelligence. But even if machine intelligence were initially achieved though whole brain emulation, resulting in conscious digital minds, the competitive forces unleashed in a post-transition economy could easily lead to the emergence of progressively less neuromorphic forms of machine intelligence, either because synthetic AI is created de novo or because the emulations would, through successive modifications and enhancements, increasingly depart their original human form.

Consider a scenario in which after emulation technology has been developed, continued progress in neuroscience and computer science (expedited by the presence of digital minds to serve as both researchers and test subjects) makes it possible to isolate individual cognitive modules in an emulation, and to hook them up to modules isolated from other emulations. A period of training and adjustment may be required before different modules can collaborate effectively; but modules that conform to common standards could more quickly interface with other standard modules. This would make standardized modules more productive, and create pressure for more standardization.

Emulations can now begin to outsource increasing portions of their functionality. Why learn arithmetic when you can send your numerical reasoning task to Gauss-Modules, Inc.? Why be articulate when you can hire Coleridge Conversations to put your thoughts into words? Why make decisions about your personal life when there are certified executive modules that can scan your goal system and manage your resources to achieve your goals better than if you tried to do it yourself? Some emulations may prefer to retain most of their functionality and handle tasks themselves that could be done more efficiently by others. Those emulations would be like hobbyists who enjoy growing their own vegetables or knitting their own cardigans. Such hobbyist emulations would be less efficient; and if there is a net flow of resources from less to more efficient participants of the economy, the hobbyists would eventually lose out.

BOOK: Superintelligence: Paths, Dangers, Strategies
7.49Mb size Format: txt, pdf, ePub
ads

Other books

The Healers Apprentice by Melanie Dickerson
Saga by Connor Kostick
Dragonkin by Crymsyn Hart
Watch Your Back by Rose, Karen
Lives in Writing by David Lodge
Loser Takes All by Graham Greene