The Selfish Gene (18 page)

Read The Selfish Gene Online

Authors: Richard Dawkins

BOOK: The Selfish Gene
13.76Mb size Format: txt, pdf, ePub

 

Many people think of this as a 'good thing' in some vaguely group-selectionist way. Wynne-Edwards has an altogether more daring interpretation. High-ranking individuals are more likely to breed than low-ranking individuals, either because they are preferred by females, or because they physically prevent low-ranking males from getting near females. Wynne-Edwards sees high social rank as another ticket of entitlement to reproduce. Instead of fighting directly over females themselves, individuals fight over social status, and then accept that if they do not end up high on the social scale they are not entitled to breed. They restrain themselves where females are directly concerned, though they may try even now and then to win higher status, and therefore could be said to compete indirectly over females. But, as in the case of territorial behaviour, the result of this Voluntary acceptance' of the rule that only high-status males should breed is, according to Wynne-Edwards, that populations do not grow too fast. Instead of actually having too many children, and then finding out the hard way that it was a mistake, populations use formal contests over status and territory as a means of limiting their size slightly below the level at which starvation itself actually takes its toll.

 

Perhaps the most startling of Wynne-Edwards's ideas is that of epideictic behaviour, a word that he coined himself. Many animals spend a great deal of time in large flocks, herds, or shoals. Various more or less common-sense reasons why such aggregating behaviour should have been favoured by natural selection have been suggested, and I will talk about some of them in Chapter 10. Wynne-Edwards's idea is quite different. He proposes that when huge flocks of starlings mass at evening, or crowds of midges dance over a gatepost, they are performing a census of their population. Since he is supposing that individuals restrain their birth-rates in the interests of the group as a whole, and have fewer babies when the population density is high, it is reasonable that they should have some way of measuring the population density. Just so; a thermostat needs a thermometer as an integral part of its mechanism. For Wynne-Edwards, epideictic behaviour is deliberate massing in crowds to facilitate population estimation. He is not suggesting conscious population estimation, but an automatic nervous or hormonal mechanism linking the individuals' sensory perception of the density of their population with their reproductive systems.

 

I have tried to do justice to Wynne-Edwards's theory, even if rather briefly. If I have succeeded, you should now be feeling persuaded that it is, on the face of it, rather plausible. But the earlier chapters of this book should have prepared you to be sceptical to the point of saying that, plausible as it may sound, the evidence for Wynne-Edwards's theory had better be good, or else. ... And unfortunately the evidence is not good. It consists of a large number of examples which could be interpreted in his way, but which could equally well be interpreted on more orthodox 'selfish gene' lines.

 

Although he would never have used that name, the chief architect of the selfish gene theory of family planning was the great ecologist David Lack. He worked especially on clutch-size in wild birds, but his theories and conclusions have the merit of being generally applicable. Each bird species tends to have a typical clutch size. For instance, gannets and guillemots incubate one egg at a time, swifts three, great tits half a dozen or more. There is variation in this: some swifts lay only two at a time, great tits may lay twelve. It is reasonable to suppose that the number of eggs a female lays and incubates is at least partly under genetic control, like any other characteristic. That is say there may be a gene for laying two eggs, a rival allele for laying three, another allele for laying four, and so on, although in practice it is unlikely to be quite as simple as this. Now the selfish gene theory requires us to ask which of these genes will become more numerous in the gene pool. Superficially it might seem that the gene for laying four eggs is bound to have an advantage over the genes for laying three or two. A moment's reflection shows that this simple 'more means better' argument cannot be true, however. It leads to the expectation that five eggs should be better than four, ten better still, 100 even better, and infinity best of all. In other words it leads logically to an absurdity. Obviously there are costs as well as benefits in laying a large number of eggs. Increased bearing is bound to be paid for in less efficient caring. Lack's essential point is that for any given species, in any given environmental situation, there must be an optimal clutch size. Where he differs from Wynne-Edwards is in his answer to the question 'optimal from whose point of view?'. Wynne-Edwards would say the important optimum, to which all individuals should aspire, is the optimum for the group as a whole. Lack would say each selfish individual chooses the clutch size that maximizes the number of children she rears. If three is the optimum clutch size for swifts, what this means, for Lack, is that any individual who tries to rear four will probably end up with fewer children than rival, more cautious individuals who only try to rear three. The obvious reason for this would be that the food is so thinly spread between the four babies that few of them survive to adulthood. This would be true both of the original allocation of yolk to the four eggs, and of the food given to the babies after hatching. According to Lack, therefore, individuals regulate their clutch size for reasons that are anything but altruistic. They are not practising birth-control in order to avoid over-exploiting the group's resources. They are practising birth-control in order to maximize the number of surviving children they actually have, an aim which is the very opposite of that which we normally associate with birth-control.

 

Rearing baby birds is a costly business. The mother has to invest a large quantity of food and energy in manufacturing eggs. Possibly with her mate's help, she invests a large effort in building a nest to hold her eggs and protect them. Parents spend weeks patiently sitting on the eggs. Then, when the babies hatch out, the parents work themselves nearly to death fetching food for them, more or less non-stop without resting. As we have already seen, a parent great tit brings an average of one item of food to the nest every 30 seconds of daylight. Mammals such as ourselves do it in a slightly different way, but the basic idea of reproduction being a costly affair, especially for the mother, is no less true. It is obvious that if a parent tries to spread her limited resources of food and effort among too many children, she will end up rearing fewer than if she had set out with more modest ambitions. She has to strike a balance between bearing and caring. The total amount of food and other resources which an individual female, or a mated pair, can muster is the limiting factor determining the number of children they can rear. Natural selection, according to the Lack theory, adjusts initial clutch size (litter size etc.) so as to take maximum advantage of these limited resources.

 

Individuals who have too many children are penalized, not because the whole population goes extinct, but simply because fewer of their children survive. Genes for having too many children are just not passed on to the next generation in large numbers, because few of the children bearing these genes reach adulthood. What has happened in modern civilized man is that family sizes are no longer limited by the finite resources that the individual parents can provide. If a husband and wife have more children than they can feed, the state, which means the rest of the population, simply steps in and keeps the surplus children alive and healthy. There is, in fact, nothing to stop a couple with no material resources at all having and rearing precisely as many children as the woman can physically bear. But the welfare state is a very unnatural thing. In nature, parents who have more children than they can support do not have many grandchildren, and their genes are not passed on to future generations. There is no need for altruistic restraint in the birth-rate, because there is no welfare state in nature. Any gene for overindulgence is promptly punished: the children containing that gene starve. Since we humans do not want to return to the old selfish ways where we let the children of too-large families starve to death, we have abolished the family as a unit of economic self-sufficiency, and substituted the state. But the privilege of guaranteed support for children should not be abused.

 

Contraception is sometimes attacked as 'unnatural'. So it is, very unnatural. The trouble is, so is the welfare state. I think that most of us believe the welfare state is highly desirable. But you cannot have an unnatural welfare state, unless you also have unnatural birth-control, otherwise the end result will be misery even greater than that which obtains in nature. The welfare state is perhaps the greatest altruistic system the animal kingdom has ever known. But any altruistic system is inherently unstable, because it is open to abuse by selfish individuals, ready to exploit it. Individual humans who have more children than they are capable of rearing are probably too ignorant in most cases to be accused of conscious malevolent exploitation. Powerful institutions and leaders who deliberately encourage them to do so seem to me less free from suspicion.

 

Returning to wild animals, the Lack clutch-size argument can be generalized to all the other examples Wynne-Edwards uses: territorial behaviour, dominance hierarchies, and so on. Take, for instance, the red grouse that he and his colleagues have worked on. These birds eat heather, and they parcel out the moors in territories containing apparently more food than the territory owners actually need. Early in the season they fight over territories, but after a while the losers seem to accept that they have failed, and do not fight any more. They become outcasts who never get territories, and by the end of the season they have mostly starved to death. Only territory owners breed. That non-territory owners are physically capable of breeding is shown by the fact that if a territory owner is shot his place is promptly filled by one of the former outcasts, who then breeds. Wynne-Edwards's interpretation of this extreme territorial behaviour is, as we have seen, that the outcasts 'accept' that they have failed to gain a ticket or licence to breed; they do not try to breed.

 

On the face of it, this seems an awkward example for the selfish gene theory to explain. Why don't the outcasts try, try, and try again to oust a territory holder, until they drop from exhaustion? They would seem to have nothing to lose. But wait, perhaps they do have something to lose. We have already seen that if a territory-holder should happen to die, an outcast has a chance of taking his place, and therefore of breeding. If the odds of an outcast's succeeding to a territory in this way are greater than the odds of his gaining one by fighting, then it may pay him, as a selfish individual, to wait in the hope that somebody will die, rather than squander what little energy he has in futile fighting. For Wynne-Edwards, the role of the outcasts in the welfare of the group is to wait in the wings as understudies, ready to step into the shoes of any territory holder who dies or. the main stage of group reproduction. We can now see that this may also be their best strategy purely as selfish individuals. As we saw in Chapter 4, we can regard animals as gamblers. The best strategy for a gambler may sometimes be a wait-and-hope strategy, rather than a bull-at-a-gate strategy.

 

Similarly, the many other examples where animals appear to 'accept' non-reproductive status passively can be explained quite easily by the selfish gene theory. The general form of the explanation is always the same: the individual's best bet is to restrain himself for the moment, in the hope of better chances in the future. A seal who leaves the harem-holders unmolested is not doing it for the good of the group. He is biding his time, waiting for a more propitious moment. Even if the moment never comes and he ends up without descendants, the gamble might have paid off, though, with hindsight we can see that for him it did not. And when lemmings flood in their millions away from the centre of a population explosion, they are not doing it in order to reduce the density of the area they leave behind! They are seeking, every selfish one of them, a less crowded place in which to live. The fact that any particular one may fail to find it, and dies, is something we can see with hindsight. It does not alter the likelihood that to stay behind would have been an even worse gamble.

 

It is a well-documented fact that overcrowding sometimes reduces birth-rates. This is sometimes taken to be evidence for Wynne-Edwards's theory. It is nothing of the kind. It is compatible with his theory, and it is also just as compatible with the selfish gene theory. For example, in one experiment mice were put in an outdoor enclosure with plenty of food, and allowed to breed freely. The population grew up to a point, then levelled off. The reason for the levelling-off turned out to be that the females became less fertile as a consequence of over-crowding: they had fewer babies. This kind of effect has often been reported. Its immediate cause is often called 'stress', although giving it a name like that does not of itself help to explain it. In any case, whatever its immediate cause may be, we still have to ask about its ultimate, or evolutionary explanation. Why does natural selection favour females who reduce their birth-rate when their population is over-crowded?

 

Wynne-Edwards's answer is clear. Group selection favours groups in which the females measure the population and adjust their birth-rates so that food supplies are not over-exploited. In the condition of the experiment, it so happened that food was never going to be scarce, but the mice could not be expected to realize that. They are programmed for life in the wild, and it is likely that in natural conditions over-crowding is a reliable indicator of future famine.

 

What does the selfish gene theory say? Almost exactly the same thing, but with one crucial difference. You will remember that, according to Lack, animals will tend to have the optimum number of children from their own selfish point of view. If they bear too few or too many, they will end up rearing fewer than they would have if they had hit on just the right number. Now, 'just the right number' is likely to be a smaller number in a year when the population is overcrowded than in a year when the population is sparse. We have already agreed that over-crowding is likely to foreshadow famine. Obviously, if a female is presented with reliable evidence that a famine is to be expected, it is in her own selfish interests to reduce her own birth-rate. Rivals who do not respond to the warning signs in this way will end up rearing fewer babies, even if they actually bear more. We therefore end up with almost exactly the same conclusion as Wynne-Edwards, but we get there by an entirely different type of evolutionary reasoning.

Other books

Bear Lake- Book Four by A. B. Lee, M. L. Briers
Lord of Shadows by Alix Rickloff
Brandenburg by Glenn Meade
Cartwheeling in Thunderstorms by Katherine Rundell
In the Middle of the Wood by Iain Crichton Smith
I Heart New York by Lindsey Kelk
Class A by Robert Muchamore