Read Why People Believe Weird Things: Pseudoscience, Superstition, and Other Confusions of Our Time Online

Authors: Michael Shermer

Tags: #Creative Ability, #Parapsychology, #Psychology, #Epistemology, #Philosophy & Social Aspects, #Science, #Philosophy, #Creative ability in science, #Skepticism, #Truthfulness and falsehood, #Pseudoscience, #Body; Mind & Spirit, #Belief and doubt, #General, #Parapsychology and science

Why People Believe Weird Things: Pseudoscience, Superstition, and Other Confusions of Our Time (7 page)

BOOK: Why People Believe Weird Things: Pseudoscience, Superstition, and Other Confusions of Our Time
7.15Mb size Format: txt, pdf, ePub
ads

There is also a popular notion that skeptics are closed-minded. Some even call us cynics. In principle, skeptics are not closed-minded or cynical. What I mean by a skeptic is
one who questions the validity of a particular claim by calling for evidence to prove or disprove it.
In other words, skeptics are from Missouri—the "show me" state. When we hear a fantastic claim, we say, "That's nice, prove it."

Here is an example. For many years I had heard stories about the "Hundredth Monkey phenomenon" and was fascinated with the possibility that there might be some sort of collective consciousness that we could tap into to decrease crime, eliminate wars, and generally unite as a single species. In the 1992 presidential election, in fact, one candidate—Dr. John Hagelin from the Natural Law Party—claimed that if elected he would implement a plan that would solve the problems of our inner cities: meditation. Hagelin and others (especially proponents of Transcendental Meditation, or TM) believe that thought can somehow be transferred between people, especially people in a meditative state; if enough people meditate at the same time, some sort of critical mass will be reached, thereby inducing significant planetary change. The Hundredth Monkey phenomenon is commonly cited as empirical proof of this astonishing theory. In the 1950s, so the story goes, Japanese scientists gave monkeys on Koshima Island potatoes. One day one of the monkeys learned to wash the potatoes and then taught the skill to others. When about one hundred monkeys had learned the skill—the so-called critical mass—suddenly all the monkeys knew it, even those on other islands hundreds of miles away. Books about the phenomenon have spread this theory widely in New Age circles. Lyall Watson's
Lifetide
(1979) and Ken Keyes's
The Hundredth Monkey
(1982), for example, have been through multiple printings and sold millions of copies; Elda Hartley even made a film called
The Hundredth Monkey.

As an exercise in skepticism, start by asking whether events really happened as reported. They did not. In 1952, primatologists began providing Japanese macaques with sweet potatoes to keep the monkeys from raiding local farms. One monkey did learn to wash dirt off the sweet potatoes in a stream or the ocean, and other monkeys did learn to imitate the behavior. Now let's examine Watson's book more carefully. He admits that "one has to gather the rest of the story from personal anecdotes and bits of folklore among primate researchers, because most of them are still not quite sure what happened. So I am forced to improvise the details." Watson then speculates that "an unspecified number of monkeys on Koshima were washing sweet potatoes in the sea"—hardly the level of precision one expects. He then makes this statement: "Let us say, for argument's sake, that the number was ninety-nine and that at 11:00 A.M. on a Tuesday, one further convert was added to the fold in the usual way. But the addition of the hundredth monkey apparently carried the number across some sort of threshold, pushing it through a kind of critical mass." At this point, says Watson, the habit "seems to have jumped natural barriers and to have appeared spontaneously on other islands" (1979, pp. 2-8).

Let's stop right there. Scientists do not "improvise" details or make wild guesses from "anecdotes" and "bits of folklore." In fact, some scientists
did
record
exactly
what happened (for example, Baldwin et al. 1980; Imanishi 1983; Kawai 1962). The research began with a troop of twenty monkeys in 1952, and every monkey on the island was carefully observed. By 1962, the troop had increased to fifty-nine monkeys and exactly thirty-six of the fifty-nine monkeys were washing their sweet potatoes. The "sudden" acquisition of the behavior actually took ten years, and the "hundred monkeys" were actually only thirty-six in 1962. Furthermore, we can speculate endlessly about what the monkeys knew, but the fact remains that not all of the monkeys in the troop were exhibiting the washing behavior. The thirty-six monkeys were not a critical mass even at home. And while there are some reports of similar behavior on other islands, the observations were made between 1953 and 1967. It was not sudden, nor was it necessarily connected to Koshima. The monkeys on other islands could have discovered this simple skill themselves, for example, or inhabitants on other islands might have taught them. In any case, not only is there no evidence to support this extraordinary claim, there is not even a real phenomenon to explain.

Science and Skepticism

Skepticism is a vital part of science, which I define as
a set of methods designed to describe and interpret observed or inferred phenomena, past or present, and aimed at building a testable body of knowledge open to rejection or confirmation.
In other words, science is a specific way of analyzing information with the goal of testing claims. Defining the
scientific method
is not so simple, as philosopher of science and Nobel laureate Sir Peter Medawar observed: "Ask a scientist what he conceives the scientific method to be and he will adopt an expression that is at once solemn and shifty-eyed: solemn, because he feels he ought to declare an opinion; shifty-eyed, because he is wondering how to conceal the fact that he has no opinion to declare" (1969, p. 11).

A sizable literature exists on the scientific method, but there is little consensus among authors. This does not mean that scientists do not know what they are doing. Doing and explaining may be two different things. However, scientists agree that the following elements are involved in thinking scientifically:

Induction:
Forming a hypothesis by drawing general conclusions from existing data.

Deduction:
Making specific predictions based on the hypotheses.

Observation:
Gathering data, driven by hypotheses that tell us what to look for in nature.

 

Verification:
Testing the predictions against further observations to confirm or falsify the initial hypotheses.

Science, of course, is not this rigid; and no scientist consciously goes through "steps." The process is a constant interaction of making observations, drawing conclusions, making predictions, and checking them against evidence. And data-gathering observations are not made in a vacuum. The hypotheses shape what sorts of observations you will make of nature, and these hypotheses are themselves shaped by your education, culture, and particular biases as an observer.

This process constitutes the core of what philosophers of science call the
hypothetico-deductive
method, which, according to the
Dictionary of the History of Science,
involves "(a) putting forward a hypothesis, (b) conjoining it with a statement of 'initial conditions,' (c) deducing from the two a prediction, and (d) finding whether or not the prediction is fulfilled" (Bynum, Browne, and Porter 1981, p. 196). It is not possible to say which came first, the observation or the hypothesis, since the two are inseparably interactive. But additional observations are what flesh out the hypothetico-deductive process, and they serve as the final arbiter on the validity of predictions. As Sir Arthur Stanley Eddington noted, "For the truth of the conclusions of science, observation is the supreme court of appeal" (1958, p. 9). Through the scientific method, we may form the following generalizations:

Hypothesis:
A testable statement accounting for a set of observations.

Theory:
A well-supported and well-tested hypothesis or set of hypotheses.

Fact:
A conclusion confirmed to such an extent that it would be reasonable to offer provisional agreement.

A theory may be contrasted with a
construct:
a nontestable statement to account for a set of observations.The living organisms on Earth may be accounted for by the statement "God made them" or the statement "They evolved." The first statement is a construct, the second a theory. Most biologists would even call evolution a fact.

Through the scientific method, we aim for
objectivity:
basing conclusions on external validation. And we avoid
mysticism:
basing conclusions on personal insights that elude external validation.

There is nothing wrong with personal insight as a starting point. Many great scientists have attributed their important ideas to insight, intuition, and other mental leaps hard to pin down. Alfred Russel Wallace said that the idea of natural selection "suddenly flashed upon" him during an attack of malaria. But intuitive ideas and mystical insights do not become objective until they are externally validated. As psychologist Richard Hardison explained,

Mystical "truths," by their nature, must be solely personal, and they can have no possible external validation. Each has equal claim to truth. Tealeaf reading and astrology and Buddhism; each is equally sound or unsound if we judge by the absence of related evidence. This is not intended to disparage any one of the faiths; merely to note the impossibility of verifying their correctness. The mystic is in a paradoxical position. When he seeks external support for his views he must turn to external arguments, and he denies mysticism in the process. External validation is, by definition, impossible for the mystic. (1988, pp. 259-260)

Science leads us toward
rationalism:
basing conclusions on logic and evidence. For example, how do we know the Earth is round? It is a logical conclusion drawn from observations such as

• The shadow of the Earth on the moon is round.

• The mast of a ship is the last thing seen as it sails into the distance.

• The horizon is curved.

• Photographs from space.

And science helps us avoid
dogmatism:
basing conclusions on authority rather than logic and evidence. For example, how do we know the Earth is round?

• Our parents told us.

• Our teachers told us.

• Our minister told us.

• Our textbook told us.

Dogmatic conclusions are not necessarily invalid, but they do beg other questions: How did the authorities come by their conclusions? Were they guided by science or some other means?

The Essential Tension Between Skepticism and Credulity

It is important to recognize the fallibility of science and the scientific method. But within this fallibility lies its greatest strength: self-correction. Whether a mistake is made honestly or dishonestly, whether a fraud is unknowingly or knowingly perpetrated, in time it will be flushed out of the system by lack of external verification. The cold fusion fiasco is a classic example of the system's swift exposure of error.

Because of the importance of this self-correcting feature, among scientists there is at best what Caltech physicist and Nobel laureate Richard Feynman called "a principle of scientific thought that corresponds to a kind of utter honesty—a kind of leaning over backwards." Said Feynman, "If you're doing an experiment, you should report everything that you think might make it invalid—not only what you think is right about it: other causes that could possibly explain your results" (1988, p. 247).

Despite these built-in mechanisms, science remains subject to problems and fallacies ranging from inadequate mathematical notation to wishful thinking. But, as philosopher of science Thomas Kuhn (1977) noted, the "essential tension" in science is between total commitment to the status quo and blind pursuit of new ideas. The paradigm shifts and revolutions in science depend upon proper balancing of these opposing impulses. When enough of the scientific community (particularly those in positions of power) are willing to abandon orthodoxy in favor of the (formerly) radical new theory, then and only then can a paradigm shift occur (see chapter 2).

Charles Darwin is a good example of a scientist who negotiated the essential tension between skepticism and credulity. Historian of science Frank Sulloway identifies three characteristics in Darwin's thinking that helped Darwin find his balance: (1) he respected others' opinions but was willing to challenge authorities (he intimately understood the theory of special creation, yet he overturned it with his own theory of natural selection); (2) he paid close attention to negative evidence (Darwin included a chapter called "Difficulties on Theory" in the
Origin of Species
—as a result his opponents could rarely present him with a challenge that he had not already addressed); (3) he generously used the work of others (Darwin's collected correspondence numbers over 14,000 letters, most of which include lengthy discussions and question-and-answer sequences about scientific problems). Darwin was constantly questioning, always learning, confident enough to formulate original ideas yet modest enough to recognize his own fallibility. "Usually, it is the scientific community as a whole that displays this essential tension between tradition and change," Sulloway observed, "since most people have a preference for one or the other way of thinking. What is relatively rare in the history of science is to find these contradictory qualities combined in such a successful manner in one individual" (1991, p. 32).

The essential tension in dealing with "weird things" is between being so skeptical that revolutionary ideas pass you by and being so open-minded that flimflam artists take you in. Balance can be found by answering a few basic questions: What is the quality of the evidence for the claim? What are the background and credentials of the person making the claim? Does the thing work as claimed? As I discovered during my personal odyssey in the world of alternative health and fitness therapies and gadgets, often the evidence is weak, the background and credentials of the claimants are questionable, and the therapy or gadget almost never does what it is supposed to.

This last point may well be the crucial one. I regularly receive calls about astrology. Callers usually want to know about the theory behind astrology. They are wondering whether the alignment of planetary bodies can significantly influence human destiny. The answer is no, but the more important point is that one need not understand gravity and the laws governing the motion of the planets to evaluate astrology. All one needs to do is ask, Does it work? That is, do astrologers accurately and specifically predict human destiny from the alignment of the planets? No, they do not. Not one astrologer predicted the crash of TWA flight #800; not one astrologer predicted the Northridge earthquake. Thus, the theory behind astrology is irrelevant, because astrology simply does not do what astrologers claim it can do. It vanishes hand-in-hand with the hundredth monkey.

BOOK: Why People Believe Weird Things: Pseudoscience, Superstition, and Other Confusions of Our Time
7.15Mb size Format: txt, pdf, ePub
ads

Other books

Monstruos y mareas by Marcus Sedgwick
Tomas by James Palumbo
Waiting for Midnight by Samantha Chase
La Bella Mafia by Ashley & JaQuavis
Pretty Poison by Lynne Barron
Touching the Sky by Tracie Peterson