Antifragile: Things That Gain from Disorder (55 page)

BOOK: Antifragile: Things That Gain from Disorder
12.55Mb size Format: txt, pdf, ePub

The interpretation I had in the past was that a psychological bias, the underestimation of the random structure of the world, was the cause behind such underestimation—projects take longer than planned because the estimates are too optimistic. We have evidence of such bias, called overconfidence. Decision scientists and business psychologists have theorized something called the “planning fallacy,” in which they try to explain the fact that projects take longer, rarely less time, using psychological factors.

But the puzzle was that such underestimation did not seem to exist in the past century or so, though we were dealing with the very same humans, endowed with the same biases. Many large-scale projects a century and a half ago were completed on time; many of the tall buildings and monuments we see today are not just more elegant than modernistic structures but were completed within, and often ahead of, schedule. These include not just the Empire State Building (still standing in New York), but the London Crystal Palace, erected for the Great Exhibition of 1851, the hallmark of the Victorian reign, based on the inventive ideas of a gardener. The Palace, which housed the exhibition, went from concept to grand opening in just nine months. The building took the form of a massive glass house, 1,848 feet long by 454 feet wide; it was constructed from cast iron frame components and glass made almost exclusively in Birmingham and Smethwick.

The obvious is usually missed here: the Crystal Palace project did not use computers, and the parts were built not far from the source, with a small number of businesses involved in the supply chain. Further, there were no business schools at the time to teach something called “project management” and increase overconfidence. There were no consulting firms. The agency problem (which we defined as the divergence between the interest of the agent and that of his client) was not significant. In other words, it was a much more linear economy—less complex—than today. And we have more nonlinearities—asymmetries, convexities—in today’s world.

Black Swan effects are necessarily increasing, as a result of complexity, interdependence between parts, globalization, and the beastly thing called “efficiency” that makes people now sail too close to the wind. Add to that consultants and business schools. One problem somewhere can halt the entire project—so the projects tend to get as weak as the weakest link in their chain (an acute negative convexity effect). The world is getting less and less predictable, and we rely more and more on technologies that have errors and interactions that are harder to estimate, let alone predict.

And the information economy is the culprit. Bent Flyvbjerg, the one of bridge and road projects mentioned earlier in this chapter, showed another result. The problem of cost overruns and delays is much more acute in the presence of information technologies (IT), as computer projects cause a large share of these cost overruns, and it is better to focus on these principally. But even outside of these IT-heavy projects, we tend to have very severe delays.

But the logic is simple: again, negative convexity effects are the main culprit, a direct and visible cause. There is an asymmetry in the way errors hit you—the same as with travel.

No psychologist who has discussed the “planning fallacy” has realized that, at the core, it is not essentially a psychological problem, not an issue with human errors; it is inherent to the nonlinear structure of the projects. Just as time cannot be negative, a three-month project cannot be completed in zero or negative time. So, on a timeline going left to right, errors add to the right end, not the left end of it. If uncertainty were linear we would observe some projects completed extremely early (just as we would arrive sometimes very early, sometimes very late). But this is not the case.

Wars, Deficits, and Deficits
 

The Great War was estimated to last only a few months; by the time it was over, it had gotten France and Britain heavily in debt; they incurred at least ten times what they thought their financial costs would be, aside from all the horrors, suffering, and destruction. The same of course for the second war, which added to the U.K. debt, causing it to become heavily indebted, mostly to the United States.

In the United States the prime example remains the Iraq war, expected by George W. Bush and his friends to cost thirty to sixty billion, which so far, taking into account all the indirect costs, may have swelled to more than two trillion—indirect costs multiply, causing chains, explosive chains of interactions, all going in the same direction of more costs, not less. Complexity plus asymmetry (plus such types as George W. Bush), once again, lead to explosive errors.

The larger the military, the disproportionally larger the cost overruns.

But wars—with more than twentyfold errors—are only illustrative of the way governments underestimate explosive nonlinearities (convexity effects) and why they should not be trusted with finances or any large-scale decisions. Indeed, governments do not need wars at all to get us in trouble with deficits: the underestimation of the costs of their projects is chronic for the very same reason 98 percent of contemporary projects have overruns. They just end up spending more than they tell us. This has led me to install a governmental golden rule: no borrowing allowed, forced fiscal balance.

WHERE THE “EFFICIENT” IS NOT EFFICIENT
 

We can easily see the costs of fragility swelling in front of us, visible to the naked eye. Global disaster costs are today more than three times what they were in the 1980s, adjusting for inflation. The effect, noted a while ago by the visionary researcher on extreme events Daniel Zajdenweber, seems to be accelerating. The economy can get more and more “efficient,” but fragility is causing the costs of errors to be higher.

The stock exchanges have converted from “open outcry” where wild traders face each other, yelling and screaming as in a souk, then
go drink together. Traders were replaced by computers, for very small visible benefits and massively large risks. While errors made by traders are confined and distributed, those made by computerized systems go wild—in August 2010, a computer error made the entire market crash (the “flash crash”); in August 2012, as this manuscript was heading to the printer, the Knight Capital Group had its computer system go wild and cause $10 million dollars of losses a minute, losing $480 million.

And naive cost-benefit analyses can be a bit harmful, an effect that of course swells with size. For instance, the French have in the past focused on nuclear energy as it seemed “clean” and cheap. And “optimal” on a computer screen. Then, after the wake-up call of the Fukushima disaster of 2011, they realized that they needed additional safety features and scrambled to add them, at any cost. In a way this is similar to the squeeze I mentioned earlier: they are forced to invest, regardless of price. Such additional expense was not part of the cost-benefit analysis that went into the initial decision and looked good on a computer screen. So when deciding on one source of fuel against another, or similar comparisons, we do not realize that model error may hit one side more than the other.

Pollution and Harm to the Planet
 

From this we can generate a simple ecological policy. We know that fossil fuels are harmful in a nonlinear way. The harm is necessarily concave (if a little bit of it is devoid of harm, a lot can cause climatic disturbances). While on epistemological grounds, because of opacity, we do not need to believe in anthropogenic climate change (caused by humans) in order to be ecologically conservative, we can put these convexity effects to use in producing a risk management rule for pollution. Simply, just as with size, split your sources of pollution among many natural sources. The harm from polluting with ten different sources is smaller than the equivalent pollution from a single source.
4

Let’s look at naturelike ancestral mechanisms for regulating the concentration effects. We contemporary humans go to the stores to purchase the same items, say tuna, coffee or tea, rice, mozzarella, Cabernet
wine, olive oil, and other items that appear to us as not easily substitutable. Because of sticky contemporary habits, cultural contagion, and the rigidity of factories, we are led to the excessive use of specific products. This concentration is harmful. Extreme consumption of, say, tuna, can hurt other animals, mess with the ecosystem, and lead species to extinction. And not only does the harm scale nonlinearly, but the shortages lead to disproportional rises in prices.

Ancestral humans did it differently. Jennifer Dunne, a complexity researcher who studies hunter-gatherers, examined evidence about the behavior of the Aleuts, a North American native tribe, for which we have ample data, covering five millennia. They exhibit a remarkable lack of concentration in their predatorial behavior, with a strategy of prey switching. They were not as sticky and rigid as us in their habits. Whenever they got low on a resource, they switched to another one, as if to preserve the ecosystem. So they understood convexity effects—or, rather, their habits did.

Note that globalization has had the effect of making contagions planetary—as if the entire world became a huge room with narrow exits and people rushing to the same doors, with accelerated harm. Just as about every child reads Harry Potter and joins (for now) Facebook, people when they get rich are starting to engage in the same activities and buy the same items. They drink Cabernet wine, hope to visit Venice and Florence, dream of buying a second home in the South of France, etc. Tourist locations are becoming unbearable: just go to Venice next July.

The Nonlinearity of Wealth
 

We can certainly attribute the fragilizing effect of contemporary globalization to complexity, and how connectivity and cultural contagions make gyrations in economic variables much more severe—the classic switch to Extremistan. But there is another effect: wealth. Wealth means more, and because of nonlinear scaling, more is different. We are prone to make more severe errors because we are simply wealthier. Just as projects of one hundred million dollars are more unpredictable and more likely to incur overruns than five-million-dollar ones, simply by being richer, the world is troubled with additional unpredictability and fragility. This comes with growth—at a country level, this Highly Dreamed-of GDP Growth. Even at an individual level, wealth means
more headaches; we may need to work harder at mitigating the complications arising from wealth than we do at acquiring it.

Conclusion
 

To conclude this chapter, fragility in any domain, from a porcelain cup to an organism, to a political system, to the size of a firm, or to delays in airports, resides in the nonlinear. Further, discovery can be seen as an antideficit. Think of the exact opposite of airplane delays or project overruns—something that benefits from uncertainty. And discovery presents the mirror image of what we saw as fragile, randomness-hating situations.

1
Actually there are different muscle fibers, each one responding to different sets of conditions with varied asymmetries of responses. The so-called “fast-twitch” fibers, the ones used to lift very heavy objects, are very antifragile, as they are convex to weight. And they die in the absence of intensity.

2
A nuance: the notions of “large” and “small” are relative to a given ecology or business structure. Small for an airplane maker is different from “small” when it comes to a bakery. As with the European Union’s subsidiarity principle, “small” here means the smallest possible unit for a given function or task that can operate with a certain level of efficiency.

3
The other problem is that of misunderstanding the nonlinearity of natural resources, or anything particularly scarce and vital. Economists have the so-called law of scarcity, by which things increase in value according to the demand for them—but they ignore the consequences of nonlinearities on risk. My former thesis director, Hélyette Geman, and I are currently studying a “law of convexity” that makes commodities, particularly vital ones, even dearer than previously thought.

4
Volatility and uncertainty are equivalent, as we saw with the table of the Disorder family. Accordingly, note that the fragile is harmed by an increase in uncertainty.

CHAPTER 19
 
 
The Philosopher’s Stone and Its Inverse
 

They tell you when they are going bust—Gold is sometimes a special variety of lead

 

Other books

Heart of the Desert by Carol Marinelli
The Lost Castle by Michael Pryor
The Devil's Bargain by Miranda Joyce
The Sleeve Waves by Angela Sorby
Kiss List by J. S. Abilene