Biocentrism: How Life and Consciousness Are the Keys to Understanding the True Nature of the Universe (2 page)

BOOK: Biocentrism: How Life and Consciousness Are the Keys to Understanding the True Nature of the Universe
6.16Mb size Format: txt, pdf, ePub
The student takes his chair. So that’s it! The universe is a quantum fluctuation! Clarity at last.
But even the professor, in his quiet moments alone, would wonder at least briefly what things might have been like the Tuesday before the Big Bang. Even he realizes in his bones that you can never get something from nothing, and that the Big Bang is no explanation at all for the origins of everything but merely, at best, the partial description of a single event in a continuum that is probably timeless. In short, one of the most widely known and popularized “explanations” about the origin and nature of the cosmos abruptly brakes at a blank wall at the very moment when it seems to be arriving at its central point.
During this entire parade, of course, a few people in the crowd will happen to notice that the emperor seems to have skimped in his wardrobe budget. It’s one thing to respect authority and acknowledge that theoretical physicists are brilliant people, even if they do tend to drip food on themselves at buffets. But at some point, virtually everyone has thought or at least felt: “This really doesn’t work. This doesn’t explain anything fundamental, not really. This whole business, A to Z, is unsatisfactory. It doesn’t ring true. It doesn’t feel right. It doesn’t answer my questions. Something’s rotten behind those ivy-covered walls, and it goes deeper than the hydrogen sulfide released by the fraternity rushers.”
Like rats swarming onto the deck of a sinking ship, more problems keep surfacing with the current model. It now turns out that our beloved familiar baryonic matter—that is, everything we see, and everything that has form, plus all known energies—is abruptly reduced to just 4 percent of the universe, with dark matter constituting about 24 percent. The true bulk of the cosmos suddenly becomes dark energy, a term for something utterly mysterious. And, by the way, the expansion is increasing, not decreasing. In just a few years,
the basic nature of the cosmos goes inside out, even if nobody at the office watercooler seems to notice.
In the last few decades, there has been considerable discussion of a basic paradox in the construction of the universe as we know it. Why are the laws of physics exactly balanced for animal life to exist? For example, if the Big Bang had been one-part-in-a-million more powerful, it would have rushed out too fast for the galaxies and life to develop. If the strong nuclear force were decreased 2 percent, atomic nuclei wouldn’t hold together, and plain-vanilla hydrogen would be the only kind of atom in the universe. If the gravitational force were decreased by a hair, stars (including the Sun) would not ignite. These are just three of just more than two hundred physical parameters within the solar system and universe so exact that it strains credulity to propose that they are random—even if that is exactly what standard contemporary physics baldly suggests. These fundamental constants of the universe—constants that are not predicted by any theory—all seem to be carefully chosen, often with great precision, to allow for the existence of life and consciousness (yes, consciousness raises its annoying paradoxical head yet a third time). The old model has absolutely no reasonable explanation for this. But biocentrism supplies answers, as we shall see.
There’s more. Brilliant equations that accurately explain the vagaries of motion contradict observations about how things behave on the small scale. (Or, to affix the correct labels on it, Einstein’s relativity is incompatible with quantum mechanics.) Theories of the origins of the cosmos screech to a halt when they reach the very event of interest, the Big Bang. Attempts to combine all forces in order to produce an underlying oneness—currently in vogue is string theory—require invoking at least eight extra dimensions, none of which have the slightest basis in human experience, nor can be experimentally verified in any way.
When it comes right down to it, today’s science is amazingly good at figuring out how the parts work. The clock has been taken apart, and we can accurately count the number of teeth in each wheel and gear, and ascertain the rate at which the flywheel spins.
We know that Mars rotates in 24 hours, 37 minutes, and 23 seconds, and this information is as solid as it comes. What eludes us is the big picture. We provide interim answers, we create exquisite new technologies from our ever-expanding knowledge of physical processes, we dazzle ourselves with our applications of our newfound discoveries. We do badly in just one area, which unfortunately encompasses all the bottom-line issues: what is the nature of this thing we call reality, the universe as a whole?
Any honest metaphorical summary of the current state of explaining the cosmos as a whole is . . . a swamp. And this particular Everglade is one where the alligators of common sense must be evaded at every turn.
The avoidance or postponement of answering such deep and basic questions was traditionally the province of religion, which excelled at it. Every thinking person always knew that an insuperable mystery lay at the final square of the game board, and that there was no possible way of avoiding it. So, when we ran out of explanations and processes and causes that preceded the previous cause, we said, “God did it.” Now, this book is not going to discuss spiritual beliefs nor take sides on whether this line of thinking is wrong or right. It will only observe that invoking a deity provided something that was crucially required: it permitted the inquiry to reach some sort of agreed-upon endpoint. As recently as a century ago, science texts routinely cited God and “God’s glory” whenever they reached the truly deep and unanswerable portions of the issue at hand.
Today, such humility is in short supply. God of course has been discarded, which is appropriate in a strictly scientific process, but no other entity or device has arisen to stand in for the ultimate “I don’t have a clue.” To the contrary, some scientists (Stephen Hawking and the late Carl Sagan come to mind) insist that a “theory of everything” is just around the corner, and then we’ll essentially know it all—any day now.
It hasn’t happened, and it won’t happen. The reason is not for any lack of effort or intelligence. It’s that the very underlying worldview is flawed. So now, superimposed on the previous theoretical
contradictions, stands a new layer of unknowns that pop into our awareness with frustrating regularity.
But a solution lies within our grasp, a solution hinted at by the frequency with which, as the old model breaks down, we see an answer peeking out from under a corner. This is the underlying problem: we have ignored a critical component of the cosmos, shunted it out of the way because we didn’t know what to do with it. This component is consciousness.
2
IN THE BEGINNING THERE WAS . . . WHAT?
All things are one.
—Heraclitus,
On the Universe
(540-480 BC)
 
 
 
H
ow can a man whose career revolves around stretching the scientific method to its outer bounds—stem cell research, animal cloning, reversing the aging process at the cellular level—bear witness to the limits of his profession?
But there is more to life than can be explained by our science. I readily recall how everyday life makes this obvious.
Just a short time ago, I crossed the causeway of the small island I call home. The pond was dark and still. I stopped and turned off my flashlight. Several strange glowing objects caught my attention on the side of the road. I thought they were some of those jack-o’lantern mushrooms,
Clitocybe illudens,
whose luminescent caps had just started to push up through the decaying leaves. I squatted down
to observe one of them with my flashlight. It turned out to be a glowworm, the luminous larvae of the European beetle
Lampyris noctiluca.
There was a primitiveness in its little segmented oval body, like some trilobite that had just crawled out of the Cambrian sea 500 million years ago. There we were, the beetle and I, two living objects that had entered into each other’s worlds, and yet were fundamentally linked together all along. It ceased emitting its greenish light and I, for my part, turned off my flashlight.
I wondered if our little interaction was any different from that of any other two objects in the universe. Was this primitive little grub just another collection of atoms—proteins and molecules spinning like planets around the sun? Could it be grasped by a mechanist’s logic?
It is true that the laws of physics and chemistry can tackle the rudimentary biology of living systems, and as a medical doctor I can recite in detail the chemical foundations and cellular organization of animal cells: oxidation, biophysical metabolism, all the carbohydrates, lipids, and amino acid patterns. But there was more to this luminous little bug than the sum of its biochemical functions. A full understanding of life cannot be found only by looking at cells and molecules. Conversely, physical existence cannot be divorced from the animal life and structures that coordinate sense perception and experience.
It seems likely that this creature was the center of its own sphere of physical reality just as I was the center of mine. We were connected not only by intertwined consciousness, nor simply by being alive at the same moment in Earth’s 3.9-billion-year biological history but by something both mysterious and suggestive—a pattern that is a template for the cosmos itself.
Just as the mere existence of a postage stamp of Elvis would reveal to an alien visitor much more than a frozen snapshot of pop music history, the slug had a tale to tell that could illuminate even the depths of a wormhole—if we only had the right mindset to understand it.
Although the beetle stayed quiescent there in the darkness, it had little walking legs, neatly lined up under its segmented body,
and possessed sensory cells that transmitted messages to the cells in its brain. Perhaps the creature was too primitive to collect data and pinpoint my location in space. Maybe my existence in its universe was limited to some huge and hairy shadow stabilizing a flashlight in the air. I do not know. But as I stood up and left, I no doubt dispersed into the haze of probability surrounding the glowworm’s little world.
Our science to date has failed to recognize those special properties of life that make it fundamental to material reality. This view of the world in which life and consciousness are the bottom line in understanding the larger universe—biocentrism—revolves around the way a subjective experience, which we call consciousness, relates to a physical process.
It is a vast mystery that I have pursued my entire life with a lot of help along the way, standing on the shoulders of some of the greatest and most lauded minds of the modern age. I have also come to conclusions that would shock the conventions of my predecessors, placing biology above the other sciences in an attempt to find the theory of everything (or TOE) that has evaded other disciplines.
Some of the thrill that came with the announcement that the human genome had been mapped or the idea that we are close to understanding the first second of time after the Big Bang rests in our innate human desire for completeness and totality.
But most of these comprehensive theories fail to take into account one crucial factor: we are creating them. It is the biological creature that fashions the stories, that makes the observations, and that gives names to things. And therein lies the great expanse of our oversight, that science has not confronted the one thing that is at once most familiar and most mysterious—conscious awareness. As Emerson wrote in “Experience,” an essay that confronted the facile positivism of his age: “We have learned that we do not see directly, but mediately, and that we have no means of correcting these colored and distorting lenses which we are, or of computing the amount of their errors. Perhaps these subject-lenses have a creative power;
perhaps there are no objects
.”
George Berkeley, for whom the campus and town were named, came to a similar conclusion: “The only things we perceive,” he would say, “are our perceptions.”
A biologist is at first glance perhaps an unlikely source for a new theory of the universe. But at a time when biologists believe they have discovered the “universal cell” in the form of embryonic stem cells, and some cosmologists predict that a unifying theory of the universe may be discovered in the next two decades, it is perhaps inevitable that a biologist finally seeks to unify existing theories of the “physical world” with those of the “living world.” What other discipline can approach it? In that regard, biology should really be the first and last study of science. It is our own nature that is unlocked by the humanly created natural sciences used to understand the universe.
A deep problem lurks, too: we have failed to protect science against speculative theories that have so entered mainstream thinking that they now masquerade as fact. The “ether” of the nineteenth century; the “space-time” of Einstein; the “string theory” of the new millennium with new dimensions blowing up in different realms, and not only strings but “bubbles” shimmering down the byways of the universe are examples of this speculation. Indeed, unseen dimensions (up to one hundred in some theories) are now envisioned everywhere, some curled up like soda-straws at every point in space.
Today’s preoccupation with unprovable physical “theories of everything” is a sacrilege to science itself, a strange detour from the purpose of the scientific method, whose bible has always decreed that we must question everything relentlessly and not worship what Bacon called “The Idols of the Mind.” Modern physics has become like Swift’s Kingdom of Laputa, flying precariously on an island above the Earth and indifferent to the world beneath. When science tries to resolve a theory’s conflicts by adding and subtracting dimensions to the universe like houses on a Monopoly board, dimensions unknown to our senses and for which not a shred of observational or experimental evidence exists, we need to take a time-out and examine our dogmas. And when ideas are thrown around with no
physical backing and no hope of experimental confirmation, one may wonder whether this can still be called science at all. “If you’re not observing,” says a relativity expert, Professor Tarun Biswas of the State University of New York, “There’s no point in coming up with theories.”

Other books

Slave to Love by Nikita Black
Hollywood Nocturnes by James Ellroy
Return To Lan Darr by Anderson Atlas
Fenix by Vivek Ahuja
Heaven Is High by Kate Wilhelm
Pagan's Vows by Catherine Jinks