Biocentrism: How Life and Consciousness Are the Keys to Understanding the True Nature of the Universe (3 page)

BOOK: Biocentrism: How Life and Consciousness Are the Keys to Understanding the True Nature of the Universe
10.33Mb size Format: txt, pdf, ePub
But perhaps the cracks in the system are just the points that let the light shine more directly on the mystery of life.
The root of this present waywardness is always the same—the attempt of physicists to overstep the legitimate boundaries of science. The questions they most lust to solve are actually bound up with the issues of life and consciousness. But it’s a Sisyphusian task: physics can furnish no true answers for them.
If the most primary questions of the universe have traditionally been tackled by physicists attempting to create grand unified theories—exciting and glamorous as they are—such theories remain an evasion, if not a reversal of the central mystery of knowledge: that the laws of the world somehow produced the observer in the first place! And this is one of the central themes of biocentrism and this book: that the animal observer creates reality and not the other way around.
This is not some minor tweak in worldview. Our entire education system in all disciplines, the construction of our language, and our socially accepted “givens”—those starting points in conversations—revolve around a bottom-line mindset that assumes a separate universe “out there” into which we have each individually arrived on a very temporary basis. It is further assumed that we accurately perceive this external pre-existing reality and play little or no role in its appearance.
So the first step in constructing a credible alternative is to question the standard view that the universe would exist even if it were empty of life, and absent any consciousness or perception of it. Although overturning the widespread current mindset, ingrained as deeply as it has been, may require the remainder of this book and perusal of strong, current evidence from disparate sources, we can certainly begin with simple logic. Certainly, great earlier thinkers
have insisted that logic alone is all that’s needed to see the universe in a fresh light, not complex equations or experimental data using $50 billion particle colliders. Indeed, a bit of thought will make it obvious that without perception, there can be no reality.
Absent the act of seeing, thinking, hearing—in short, awareness in its myriad aspects—what have we got? We can believe and aver that there’s a universe out there even if all living creatures were nonexistent, but this idea is merely a thought and a thought requires a thinking organism. Without any organism, what if anything is
really
there? We’ll delve into this in much greater detail in the next chapter; for now, we can probably agree that such lines of inquiry start to smack of philosophy, and it is far better to avoid that murky swamp and answer this by science alone.
For the moment, therefore, we’ll accept on a provisional level that what we’d clearly and unambiguously recognize as existence must begin with life and perception. Indeed, what could existence mean, absent consciousness of any kind?
Take the seemingly undeniable logic that your kitchen is always there, its contents assuming all their familiar forms, shapes, and colors, whether or not you are in it. At night, you click off the light, walk through the door, and leave for the bedroom. Of course it’s there, unseen, all through the night. Right?
But consider: the refrigerator, stove, and everything else are composed of a shimmering swarm of matter/energy. Quantum theory, to which we will devote two full chapters, tells us that not a single one of those subatomic particles actually exists in a definite place. Rather, they merely exist as a range of probabilities that are unmanifest. In the presence of an observer—that is, when you go back in to get a drink of water—each one’s wave function collapses and it assumes an actual position, a physical reality. Until then, it’s merely a swarm of possibilities. And wait, if that seems too far out, then forget quantum madness and stay with everyday science, which comes to a similar conclusion because the shapes, colors, and forms known as your kitchen are seen as they are solely because photons of light from the overhead bulb bounce off the various objects and then interact with
your brain through a complex set of retinal and neural intermediaries. This is undeniable—it’s basic seventh-grade science. The problem is, light doesn’t
have
any color nor any visual characteristics at all, as we shall see in the next chapter. So while you may think that the kitchen as you remember it was “there” in your absence, the reality is that nothing remotely resembling what you can imagine could be present when a consciousness is not interacting. (If this seems impossible, stay tuned: this is one of the easiest, most demonstrable aspects of biocentrism.)
Indeed, it is here that biocentrism arrives at a very different view of reality than that which has been generally embraced for the last several centuries. Most people, in and out of the sciences, imagine the external world to exist on its own, with an appearance that more or less resembles what we ourselves see. Human or animal eyes, according to this view, are mere windows that accurately let in the world. If our personal window ceases to exist, as in death, or is painted black and opaque, as in blindness, that doesn’t in any way alter the continued existence of the external reality or its supposed “actual” appearance. A tree is still there, the moon still shines, whether or not we are cognizing them. They have an independent existence. By this reasoning, the human eye and brain have been designed to let us cognize the
actual
visual appearance of things, and to alter nothing. True, a dog may see an autumn maple solely in shades of gray, and an eagle may perceive much greater detail among its leaves, but most creatures basically apprehend the same visually real object, which persists even if
no
eyes are upon it.
Not so, says biocentrism.
This “Is it really there?” issue is ancient, and of course predates biocentrism, which makes no pretense about being the first to take a stance about it. Biocentrism, however,
explains
why one view and not the other must be correct. The converse is equally true: once one fully understands that there is no independent external universe outside of biological existence, the rest more or less falls into place.
3
THE SOUND OF A FALLING TREE
W
ho hasn’t considered or at least heard the old question, “If a tree falls in the forest, and nobody is there, does it make a sound?”
If we conduct a quick survey of friends and family, we shall find that the vast majority of people answer decisively in the affirmative. “
Of course
a falling tree makes a sound,” someone recently replied, with a touch of pique, as if this were a question too dumb to merit a moment’s contemplation. By taking this stance, what people are actually averring is their belief in an objective, independent reality. Obviously, the prevailing mindset is of a universe that exists just as well without us as with us. This fits in tidily with the Western view held at least since Biblical times, that “little me” is of small importance or consequence in the cosmos.
Few consider (or perhaps have sufficient science background for) a realistic sonic appraisal of what actually occurs when that tree falls in the woods. What is the process that produces sound? So, if the reader will forgive a quick return to fifth-grade Earth Science, here’s a quick summary: sound is created by a disturbance
in some medium, usually air, although sound travels even faster and more efficiently through denser materials such as water or steel. Limbs, branches, and trunks violently striking the ground create rapid pulses of air. A deaf person can readily feel some of these pulsations; they are particularly blatant on the skin when the pulses repeat with a frequency of five to thirty times a second. So, what we have in hand with the tumbling tree, in actuality, are rapid air-pressure variations, which spread out by traveling through the surrounding medium at around 750 mph. As they do so, they lose their coherency until the background evenness of the air is reestablished. This, according to simple science, is what occurs even when a brain-ear mechanism is absent—a series of greater and lesser air-pressure passages. Tiny, rapid, puffs of wind. There is no sound attached to them.
Now, let’s lend an ear to the scene. If someone is nearby, the air puffs physically cause the ear’s tympanic membrane (eardrum) to vibrate, which then stimulates nerves
only
if the air is pulsing between 20 and 20,000 times a second (with an upper limit more like 10,000 for people over forty, and even less for those of us whose misspent youth included earsplitting rock concerts). Air that puffs 15 times a second is not intrinsically different from air that pulses 30 times, yet the former will never result in a human perception of sound because of the design of our neural architecture. In any case, nerves stimulated by the moving eardrum send electrical signals to a section of the brain, resulting in the cognition of a noise. This experience, then, is inarguably symbiotic. The pulses of air by themselves do not constitute any sort of sound, which is obvious because 15-pulse air puffs remain silent no matter how many ears are present. Only when a specific range of pulses are present is the ear’s neural architecture designed to let human consciousness conjure the noise experience. In short, an observer, an ear, and a brain are every bit as necessary for the experience of sound as are the air pulses. The external world and consciousness are correlative. And a tree that falls in an empty forest creates only silent air pulses—tiny puffs of wind.
When someone dismissively answers “Of course a tree makes a sound if no one’s nearby,” they are merely demonstrating their inability to ponder an event nobody attended. They’re finding it too difficult to take themselves out of the equation. They somehow continue to imagine themselves present when they are absent.
Now consider a lit candle placed on a table in that same empty forest. This is not an advisable setup, but let’s pretend Smokey the Bear is supervising the whole thing with an extinguisher at the ready, while we consider whether the flame has intrinsic brightness and a yellow color when no one’s watching.
Even if we contradict quantum experiments and allow that electrons and all other particles have assumed actual positions in the absence of observers (much more on this later), the flame is still merely a hot gas. Like any source of light, it emits photons or tiny packets of waves of electromagnetic energy. Each consists of electrical and magnetic pulses. These momentary exhibitions of electricity and magnetism are the whole show, the nature of light itself.
It is easy to recall from everyday experience that neither electricity nor magnetism have visual properties. So, on its own, it’s not hard to grasp that there is nothing inherently visual, nothing bright or colored about that candle flame. Now let these same invisible electromagnetic waves strike a human retina, and if (and only if) the waves each happen to measure between 400 and 700 nanometers in length from crest to crest, then their energy is just right to deliver a stimulus to the 8 million cone-shaped cells in the retina. Each in turn sends an electrical pulse to a neighbor neuron, and on up the line this goes, at 250 mph, until it reaches the warm, wet occipital lobe of the brain, in the back of the head. There, a cascading complex of neurons fire from the incoming stimuli, and we subjectively perceive this experience as a yellow brightness occurring in a place we have been conditioned to call “the external world.” Other creatures receiving the identical stimulus will experience something altogether different, such as a perception of gray, or even have an entirely dissimilar sensation. The point is, there isn’t a “bright yellow” light “out there” at all. At most, there is an invisible stream of
electrical and magnetic pulses.
We
are totally necessary for the experience of what we’d call a yellow flame. Again, it’s correlative.
What about if you touch something? Isn’t it solid? Push on the trunk of the fallen tree and you feel pressure. But this too is a sensation strictly inside your brain and only “projected” to your fingers, whose existence also lies within the mind. Moreover, that sensation of pressure is caused not by any contact with a solid, but by the fact that every atom has negatively charged electrons in its outer shells. As we all know, charges of the same type repel each other, so the bark’s electrons repel yours, and you feel this
electrical repulsive force
stopping your fingers from penetrating any further. Nothing solid ever meets any other solids when you push on a tree. The atoms in your fingers are each as empty as a vacant football stadium in which a single fly sits on the fifty-yard line. If we needed solids to stop us (rather than energy fields)
,
our fingers could easily penetrate the tree as if we were swiping at fog.
Consider an even more intuitive example—rainbows. The sudden appearance of those prismatic colors juxtaposed between mountains can take our breath away. But the truth is we are absolutely necessary for the rainbow’s existence. When nobody’s there, there simply is no rainbow.
Not
that
again, you might be thinking, but hang in there—this time it’s more obvious than ever. Three components are necessary for a rainbow. There must be sun, there must be raindrops, and there must be a conscious eye (or its surrogate, film) at the correct geometric location. If your eyes look directly opposite the sun (that is, at the antisolar point, which is always marked by the shadow of your head), the sunlit water droplets will produce a rainbow that surrounds that precise spot at a distance of forty-two degrees. But your eyes must be located at that spot where the refracted light from the sunlit droplets converges to complete the required geometry. A person next to you will complete his or her own geometry, and will be at the apex of a cone for an entirely different set of droplets, and will therefore see a separate rainbow. Their rainbow is very likely to look like yours, but it needn’t be so. The droplets their eyes intercept
may be of a different size, and larger droplets make for a more vivid rainbow while at the same time robbing it of blue.
Then, too, if the sunlit droplets are very nearby, as from a lawn sprinkler, the person nearby may not see a rainbow at all. Your rainbow is yours alone. But now we get to our point: what if no one’s there? Answer: no rainbow. An eye-brain system (or its surrogate, a camera, whose results will only be viewed later by a conscious observer) must be present to complete the geometry. As real as the rainbow looks, it requires your presence just as much as it requires sun and rain.

Other books

Undaunted Love by Jennings Wright
Stripped Down by Lorelei James
Always Right by Mindy Klasky
Gods and Warriors by Michelle Paver
The Devil's Waltz by Anne Stuart
Working It Out by Sean Michael
El conquistador by Federico Andahazi