Read Carrier (1999) Online

Authors: Tom - Nf Clancy

Carrier (1999) (32 page)

BOOK: Carrier (1999)
13.09Mb size Format: txt, pdf, ePub
ads
The design of the pilot’s station was quite advanced for the early 1970’s, with the most important data being displayed on an integrated “Air Combat Maneuvering panel.” The Tomcat was also equipped with the Navy’s first heads-up display (HUD) projected into the pilot’s forward field of view, and the first use of the “Hands-on-Throttle-and-Stick” (HOTAS) in the cockpit. The control stick and throttles are studded with buttons that govern weapon selection, radar modes, and other functions. HOTAS allows pilots to keep their eyes
outside
the cockpit during a dogfight. The rest of the cockpit is not so advanced. Since the F-14 was designed a decade ahead of “glass cockpit” aircraft (like the F/A-18 Hornet), most of the control panels are traditional dial-type “steam gauge” indicators. Unlike USAF fighters, though, the RIO’s backseat position does not provide flight controls (unless you count the ejection seat). A large circular display screen—the Tactical Information Display—dominates the RIO’s position, with a smaller Detail Data Display panel above it. These provide readouts for the AWG-9 radar/ fire control system, as well as weapons control. Again, circular “steam gauges” dominate the RIO’s cockpit.
When they arrived upon the aviation scene, the sensor and weapons systems of the Tomcat were a revolution.
49
The heart of the F-14 weapons system (in the -A and -B models) is the Raytheon-Hughes Airborne Weapons Group Model Nine (AWG-9) fire-control system. Composed of powerful radar, weapons-computer, signal-processor, and other components, the AWG- 9 made the F-14 the most powerful fighter in the world. Unfortunately, it never really got a chance to show its awesome capability in combat. Designed for the extremely long-range, multiple-target engagements that were projected for the Cold War at sea, the F-14 spent a generation waiting for a battle that never came. The AWG-9 requirement was to simultaneously track up to two dozen airborne targets (in an environment that might have hundreds), while actually engaging (that’s Navy for “shooting”) six of them at once. The actual tracking ranges against various-sized targets are highly classified, but the AWG-9 has regularly tracked fighter-sized targets out beyond 100 nm/ 185 km.
Since F-14 operations have always been constrained by strict rules of engagement (ROE) that require visually identifying the target, long-range shots with radar-guided AAMs have been rare. The five enemy air-to-air “kills” that the Tomcat has scored to date were all achieved at fairly short ranges, the killing missile shots all occurring with visual range of the targets. In recognition of these ROE realities, the F-14 carries a pod under the radome holding a television camera system (TCS). The TCS is equipped with a zoom lens that can be used to identify targets visually at fairly long ranges. As an added bonus, it feeds an onboard videotape recorder, which provides the flight crew an excellent visual record of their engagements.
A VF-102 F-14B Tomcat aboard the USS
George Washignton
(CVN-73) in 1997. Fully loaded, it carried fuel tanks and “iron” bombs, as well as AIM-9 Sidewinder and AIM-54 Phoenix air-to-air missiles.
OFFICIAL U.S. NAVY PHOTO
From the very start of its career, the F-14 was intended as an air-to-air killer, with little effort or money expended to give it an air-to-ground capability. The Tomcat’s claws were designed to give it the ability to kill at every range, from close in to over 100 nm/185 km, which is still something of a record.
The weapon with the longest range is the mighty Raytheon-Hughes AIM-54 Phoenix AAM. An outgrowth of the original Eagle AAM that was to have armed the F6D, the AIM-54 first flew in the 1960’s. With a range in excess of 100 nm/185 km, the AIM-54 was the first deployed AAM equipped with its own active onboard radar-guidance system. This gave it the capability of being launched in a “fire-and-forget” mode, allowing the launching aircraft to turn away to evade or begin another engagement after firing. It also means that up to six AIM-54’s can be launched at up to six different targets at once. Once launched, the missile climbs in a high-altitude parabolic trajectory, reaching speeds approaching Mach 5. When a Phoenix gets near a target, a huge 133.5-lb/60.7-kg high-explosive warhead ensures that it dies quickly. It was this capability that Navy planners wanted to utilize had the Soviet bomber/ASM missile threat ever been encountered in wartime. The Phoenix has had several versions, each one designed to keep pace with Soviet improvements in their own weaponry; the AIM-54C is the latest.
Along with the AIM-54, the Tomcat is equipped with three other weapons for killing aerial targets. The first of these, the Raytheon AIM-7M Sparrow, is an updated version of the semiactive radar-guided AAM that has been in service since the 1950’s. Weighing some 503 lb/228 kg, this medium-range (out to twenty-plus nm/thirty-seven-plus km) AAM requires continuous “illumination” from the AWG-9 radar to hit its target. Once there, the eighty-eight-pound /forty-kilogram blast-fragmentation warhead can kill any aerial target that it hits. However, the AIM-7 has always been a difficult weapon to employ, because of its need for constant radar illumination of the target. There were plans to replace the Sparrow on the F-14 with the new AIM-120 Advanced Medium Range Air-to-Air Missile (AMRAAM). Unfortunately, budget cuts at the end of the Cold War, combined with the fact that the Tomcat already had a long-range fire-and-forget AAM in the Phoenix, caused this to be canceled.
Shorter-range missile engagements are handled by the classic AIM-9M Sidewinder AAM, which utilizes infrared (heat-seeking) guidance to find its targets. The current AIM-9M version is badly dated, and almost obsolete compared with the Russian R-73/AA-11 Archer, Matra R.550 Magic, or Rafael Python-4. These missiles are not only controlled via helmet-mounted sighting systems, but also can be fired up to 90° “off-boresight” (i.e., the centerline of the firing aircraft). This shortcoming will be rectified in the early 21st century with the introduction of the new AIM-9X.
The last of the Tomcat’s air-to-air weapons was the one that designers of the F-4 Phantom thought unnecessary in the age of AAMs: a 20mm cannon. During the Vietnam War, Navy pilots complained bitterly about the MiG kills that they missed because of the Phantom’s lack of a close-in weapon (it was armed only with AIM-7/9 AAMs). When the specification for the F-14 was being written, “Tomcat” Connelly made sure that it had a gun to deal with threats inside the minimum range of AAMs. The gun in the F-14 is the same one in most U.S. fighters, the classic six-barreled 20mm M61 Vulcan. Able to fire up to six thousand 20mm shells per minute, it can literally “chop” an enemy aircraft in half.
With the exception of the internal six-barrel 20mm M61 Gatling gun, all the Tomcat’s weapons are carried externally. For mechanical simplicity, there are no weapon pylons on the movable portions of the wings, since these would have to swivel to stay pointed directly into the airflow. Because of this, drop tanks and other external stores must be accommodated under the fuselage and engines, or on the structure of the wing “glove” inside the pivot. Four deep grooves known as “wells,” shaped to the contours of AIM-7 Sparrow AAMs, are sculpted into the flat underbelly of the fuselage in the tunnel between the engine pods. When the huge (984-lb/447.5-kg) AIM-54 Phoenix missiles are carried, they are mounted on removable pallets that cover the Sparrow wells. Up to four of the AIM-54’s can be carried here, along with another pair on the “glove” pylons. However, these pylons are more normally configured with rails for an AIM-9 Sidewinder and AIM-7 Sparrow AAM.
The reason for this is an arcane number called “bringback weight,” which represents the maximum landing weight of an aircraft on a carrier deck. The bringback weight is a combination of the aircraft’s “dry” weight with the minimum safe fuel load (for several attempts at landing) and whatever ordnance and stores are being carried. An F-14 loaded with six of the big Phoenix AAMs and a minimum fuel load is above the allowable bringback weight, which means that the largest external stores load allowed are four AIM-54’s, two AIM-7’s, a pair of AIM-9’s, two external fuel tanks, and the internal M-61 20mm Gatling gun. A normal “peacetime” weapons load is composed of two of each kind of missile, the gun, and two fuel tanks. Other kinds of weapons mixes are designed around particular kinds of missions, including air superiority and strike escort.
A fighter lives or dies by its engines, and the F-14 fleet suffered for many years from an inadequate power plant, the Pratt & Whitney TF-30-P-412. This was the first turbofan engine designed specifically for a fighter, and was inherited from the F-111B program. Originally intended for the subsonic F- 6D Missileer and used in the Vought A-7 Corsair II attack bomber, it was augmented with an afterburner (as the TF30-P-100) for the supersonic F-111, and adapted as a “temporary” expedient for the F-14A. Turbofan engines are more fuel-efficient and powerful than turbojets, but are “finicky” about the airflow into their first stage of compressor blades. Turbulent “dirty” air, such as the wake of another aircraft, can cause compressor stalls, flameouts, and, too often, loss of an aircraft. The TF-30’s sensitivity to dirty air was well understood by the Grumman designers, who provided the engines with huge inlets and a system of air valves or “ramps.” These are a complex system of hydraulically controlled mechanical plates deployed at high speed, creating internal shock waves that slow the incoming air to subsonic velocity.
Though these fixes tamed the TF-30 for the Tomcat’s introduction, the Navy had plans for something better. This was to have been the Pratt & Whitney F-401, in what would have been known as the F-14B. Once again, however, developmental problems and escalating costs prevented it from entering service. This left the entire force of F-14A’s equipped with the TF-30 engine, which has killed more aircraft and crews than enemy fire ever did.
For over two decades Tomcat crews have tried to get the most out of their finicky TF-30’s (even as they lived in dread of them). To feed these huge power plants, the Tomcat carries plenty of fuel, allowing long-range missions or long loiter time on patrol. Internal fuel capacity is 2,385 U.S. gallons/9,029 liters, and two external drop tanks can be mounted under the engine inlets, each with a capacity of 267 U.S. gallons/1,011 liters. To extend its range even further, a NATO-standard retractable refueling probe is fitted on the starboard side of the forward fuselage. Even so, in these days of littoral warfare, the F-14’s rarely have to “hit” a tanker to conduct their missions. This is increasingly important, for the retirement of the fleet of KA-6D Intruder tankers means the only remaining refueling aircraft in the carrier air group are the overtaxed S-3 Vikings.
Along with its air-to-air duties, the Tomcat was designed to take on another—and perhaps its most vital—task. This is the dangerous job of photo-reconnaissance for the battle group and local theater commanders. About fifty Tomcats of all models have been specially modified to carry the Tactical Air Reconnaissance Pod System (TARPS) pod under the fuselage. This large external store (17 feet/5.2 meters long and about two feet/.6 meters in diameter) contains three different sensors. These include a conventional frame camera that looks forward and down, a “panoramic” camera that captures the ground picture from horizon to horizon on either side of the aircraft, and an infrared line-scanner that sweeps the terrain directly below the aircraft. Normally, four F-14’s in each CVW are fitted to carry the TARPS pod (in addition to their normal avionics fit), and at least six crews get special training to fly them.
A D/TARPS reconnaissance pod mounted under the fuselage of a VF-102 F-14B Tomcat.
JOHN D. GRESHAM
TARPS is the best low-to-mid-altitude photo-recon system in the world, and is a significant national strategic asset, able to capture imagery at a level of detail much greater than the high-flying U-2 or reconnaissance satellites. During the 1991 Gulf War, TARPS was especially valuable for post-strike battle-damage assessment (BDA), and was much favored over the USAF RF-4C (which has since been retired). Currently, TARPS is being upgraded to provide battle group commanders with a whole new capability: near real-time photo-reconnaissance. By replacing one of the existing film cameras with a digital unit, and tying it into the existing UHF radio system, an airborne F-14 equipped with the new pod can send a picture with good resolution back to the carrier while still in the air. With a delay of only about five minutes from the time the picture is taken to its viewing by intelligence staff, the new system (called Digital TARPS or D/TARPS) can give a battle group commander the necessary information to rapidly hit a mobile target. This is a capability long sought by military leaders of all services, and is being improved all the time.
BOOK: Carrier (1999)
13.09Mb size Format: txt, pdf, ePub
ads

Other books

Blood Sisters by Graham Masterton
All He Asks 1 by Sparrow, Felicity
Surfacing by Margaret Atwood
Red Collar by Cartharn, Clarissa
Tanner's Virgin by Lawrence Block
The Last Leaves Falling by Sarah Benwell
Disappeared by Anthony Quinn
Broken Build by Rachelle Ayala
Guilty Minds by Joseph Finder