Introducción a la ciencia I. Ciencias Físicas (47 page)

BOOK: Introducción a la ciencia I. Ciencias Físicas
11.87Mb size Format: txt, pdf, ePub

El descubrimiento de iones en la atmósfera no volvió al primer plano hasta después de que Guillermo Marconi iniciara sus experimentos de telegrafía sin hilos. Cuando, el 12 de diciembre de 1901, envió señales desde Cornualles a Terranova, a través de 3.378 km del océano Atlántico, los científicos se quedaron estupefactos. Las ondas de radio viajan sólo en línea recta. ¿Cómo podían haber superado, pues, la curvatura de la Tierra, para llegar hasta Terranova?

Un físico británico, Oliver Heaviside, y un ingeniero electrónico americano, Arthur Edwin Kennelly, sugirieron, poco después, que las señales de radio podían haber sido reflejadas por una capa de partículas cargadas que se encontrase en la atmósfera, a gran altura. La «capa Kennelly-Heaviside» —como se llama desde entonces— fue localizada, finalmente, en la década de 1920. La descubrió el físico británico Edward Víctor Appleton, cuando estudiaba el curioso fenómeno del amortiguamiento
(fading)
de la transmisión radiofónica. Y llegó a la conclusión de que tal amortiguamiento era el resultado de la interferencia entre dos versiones de la misma señal, la que iba directamente del transmisor al receptor y la que seguía a ésta después de su reflexión en la atmósfera superior. La onda retrasada se hallaba desfasada respecto a la primera, de modo que ambas se anulaban parcialmente entre sí; de aquí el amortiguamiento.

Partiendo de esta base resultaba fácil determinar la altura de la capa reflectante. Todo lo que se había de hacer era enviar señales de una longitud de onda tal que las directas anulasen por completo a las reflejadas, es decir, que ambas señales llegasen en fases contrapuestas. Partiendo de la longitud de onda de la señal empleada y de la velocidad conocida de las ondas de radio, pudo calcular la diferencia en las distancias que habían recorrido los dos trenes de ondas. De este modo determinó que la capa Kennelly-Heaviside estaba situada a unos 104 km de altura.

El amortiguamiento de las señales de radio solía producirse durante la noche. Appleton descubrió que, poco antes del amanecer, las ondas de radio eran reflejadas por la capa Kennelly-Heaviside sólo a partir de capas situadas a mayores alturas (denominadas hoy, a veces, «capas Appleton») que empezaban a los 225 km de altura (fig. 5.3).

Fig. 5.3. Perfil de la atmósfera. Las líneas quebradas indican la reflexión de las señales de radio a partir de las capas Kennelly-Heaviside y Appleton, de la ionosfera. La densidad del aire disminuye con la altura y se expresa en porcentajes de la presión barométrica a nivel del mar.

Por todos estos descubrimientos, Appleton recibió, en 1947, el Premio Nobel de Física. Había definido la importante región de la atmósfera llamada «ionosfera», término introducido en 1930 por el físico escocés Robert Alexander Watson-Watt. Incluye la mesosfera y la termosfera, y hoy se la considera dividida en cierto número de capas. Desde la estratopausa hasta los 104 km de altura aproximadamente se encuentra la «región D». Por encima de ésta se halla la capa Kennelly-Heaviside, llamada «capa D». Sobre la capa D, hasta una altura de 235 km, tenemos la «región E», un área intermedia relativamente pobre en iones, la cual va seguida por las capas de Appleton: la «capa F
1
», a 235 km, y la «capa F
2
», a 321 km. La capa F
1
es la más rica en iones, mientras que la F
2
es significativamente intensa durante el día. Por encima de estos estratos se halla la «región F».

Estas capas reflejan y absorben sólo las ondas largas de radio empleadas en las emisiones normales. Las más cortas, como las utilizadas en televisión, pasan, en su mayor parte, a través de las mismas. Ésta es la causa de que queden limitadas, en su alcance, las emisiones de televisión, limitación que puede remediarse gracias a las estaciones repetidoras situadas en satélites como el
Early Bird
(o
Pájaro del Alba
), lanzado en 1965, el cual permite que los programas de televisión atraviesen océanos y continentes. Las ondas de radio procedentes del espacio (por ejemplo, de las estrellas) pasan también a través de la ionosfera; y podemos decir que, por fortuna, pues, de lo contrario, no existiría la Radioastronomía.

La ionosfera tiene mayor potencia al atardecer, después del efecto ejercido por las radiaciones solares durante todo el día, para debilitarse al amanecer, lo cual se debe a que han vuelto a unirse muchos iones y electrones. Las tormentas solares, al intensificar las corrientes de partículas y las radiaciones de alta energía que llegan a la Tierra, determinan un mayor grado de ionización en las capas, a la vez que dan más espesor a las mismas. Las regiones situadas sobre la ionosfera se iluminan también cuando originan las auroras. Durante estas tormentas eléctricas queda interrumpida la transmisión de las ondas de radio a larga distancia, y, en ocasiones, desaparecen totalmente.

La ionosfera ha resultado ser sólo uno de los cinturones de radiación que rodea la Tierra. Más allá de la atmósfera, en lo que antes se consideraba espacio «vacío», los satélites artificiales mostraron algo sorprendente en 1958. Mas, para entenderlo, hagamos antes una incursión en el tema del magnetismo.

Imanes

Los imanes (magnetos) recibieron su nombre de la antigua ciudad griega de Magnesia, cerca de la cual se descubrieron las primeras «piedras-imán. La piedra-imán (magnetita) es un óxido de hierro que tiene propiedades magnéticas naturales. Según la tradición, Tales de Mileto, hacia el 550 a. de J.C. fue el primer filósofo que lo describió.

Magnetismo y electricidad

Los imanes se convirtieron en algo más que una simple curiosidad cuando se descubrió que una aguja, al entrar en contacto con una piedra-imán, quedaba magnetizada, y que si se permitía que la aguja pivotase libremente en un plano horizontal, señalaba siempre la línea Norte-Sur. Desde luego, la aguja era de gran utilidad para los marinos; tanto, que se hizo indispensable para la navegación oceánica, a pesar de que los polinesios se las arreglaban para cruzar el Pacífico sin necesidad de brújula.

No se sabe quién fue el primero en colocar una aguja magnetizada sobre un pivote y encerrarla en una caja, para obtener la brújula. Se supone que fueron los chinos, quienes lo transmitieron a los árabes, los cuales, a su vez, lo introdujeron en Europa. Esto es muy dudoso, y puede ser sólo una leyenda. Sea como fuere, en el siglo XII la brújula fue introducida en Europa y descrita con detalle, en 1269, por un estudiante francés más conocido por su nombre latinizado de Petrus Peregrinus, el cual llamó «polo Norte» al extremo de la aguja imantada que apuntaba al Norte, y «polo Sur» al extremo opuesto.

Como es natural, la gente especulaba acerca del motivo por el que apuntaba al Norte una aguja magnetizada. Como quiera que se conocía el hecho de que los imanes se atraían entre sí, algunos pensaron que debía de existir una gigantesca montaña magnética en el polo Norte, hacia el que apuntaba la aguja. Otros fueron más románticos y otorgaron a los imanes un «alma» y una especie de vida.

El estudio científico de los imanes inicióse con William Gilbert, médico de la Corte de Isabel I de Inglaterra. Fue éste quien descubrió que la Tierra era, en realidad, un gigantesco imán. Gilbert montó una aguja magnetizada de modo que pudiese pivotar libremente en dirección vertical (una «brújula de inclinación»), y su polo Norte señaló entonces hacia el suelo («inclinación magnética»). Usando un imán esférico como un modelo de la Tierra, descubrió que la aguja se comportaba del mismo modo cuando era colocada sobre el «hemisferio Norte» de su esfera. En 1600, Gilbert publicó estos descubrimientos en su clásica obra
De Magnete
. En los tres siglos que han transcurrido desde los trabajos de Gilbert, nadie ha conseguido explicar el magnetismo de la Tierra de forma satisfactoria para todos los especialistas. Durante largo tiempo, los científicos especularon con la posibilidad de que la Tierra pudiese tener como núcleo un gigantesco imán de hierro. A pesar de que, en efecto, se descubrió que nuestro planeta tenía un núcleo de hierro, hoy sabemos que tal núcleo no puede ser un imán, puesto que el hierro, cuando se calienta hasta los 760 °C, pierde sus grandes propiedades magnéticas, y la temperatura del núcleo de la Tierra debe de ser, por lo menos, de 1.000 °C.

La temperatura a la que una sustancia pierde su magnetismo se llama «temperatura Curie», en honor a Pierre Curie, que descubrió este fenómeno en 1895. El cobalto y el níquel, que en muchos aspectos se parecen sensiblemente al hierro, son también ferromagnéticos. La temperatura Curie para el níquel es de 356 °C; para el cobalto, de 1.075 °C. A temperaturas bajas son también ferromagnéticos otros metales. Por ejemplo, lo es el disprosio a –188 °C.

En general, el magnetismo es una propiedad inherente del átomo, aunque en la mayor parte de los materiales los pequeños imanes atómicos están orientados al azar, de modo que resulta anulado casi todo el efecto. Aun así, revelan a menudo ligeras propiedades magnéticas, cuyo resultado es el «paramagnetismo». La fuerza del magnetismo se expresa en términos de «permeabilidad». La permeabilidad en el vacío es de 1,00, y la de las sustancias paramagnéticas está situada entre 1,00 y 1,01.

Las sustancias ferromagnéticas tienen permeabilidades mucho más altas. La del níquel es de 40; la del cobalto, de 55, y la del hierro, de varios miles. En 1907, el físico francés Pierre Weiss postuló la existencia de «regiones» en tales sustancias. Se trata de pequeñas áreas, de 0,001 a 0,1 cm de diámetro (que han sido detectados), en las que los imanes atómicos están dispuestos de tal forma que sus efectos se suman, lo cual determina fuertes campos magnéticos exteriores en el seno de la región. En el hierro normal no magnetizado, las regiones están orientadas al azar y anulan los efectos de las demás. Cuando las regiones quedan alineadas por la acción de otro imán, se magnetiza el hierro. La reorientación de regiones durante el magnetismo da unos sonidos sibilantes y de «clic», que pueden ser detectados por medio de amplificadores adecuados, lo cual se denomina «efecto Barkhausen», en honor a su descubridor, el físico alemán Heinrich Barkhausen.

En las «sustancias antiferromagnéticas», como el manganeso, las regiones se alinean también, pero en direcciones alternas, de modo que se anula la mayor parte del magnetismo. Por encima de una determinada temperatura, las sustancias pierden su antiferromagnetismo y se convierten en paramagnéticas.

Si el núcleo de hierro de la Tierra no constituye, en sí mismo, un imán permanente, por haber sido sobrepasada su temperatura Curie, debe de haber otro modo de explicar la propiedad que tiene la Tierra de afectar la situación de los extremos de la aguja. La posible causa fue descubierta gracias a los trabajos del científico inglés Michael Faraday, quien comprobó la relación que existe entre el magnetismo y la electricidad.

En la década de 1820, Faraday comenzó un experimento que había descrito por vez primera Petrus Peregrinus —y que aún sigue atrayendo a los jóvenes estudiantes de Física—. Consiste en esparcir finas limaduras de hierro sobre una hoja de papel situada encima de un imán y golpear suavemente el papel. Las limaduras tienden a alinearse alrededor de unos arcos que van del polo norte al polo sur del imán. Según Faraday, estas «líneas magnéticas de fuerza» forman un «campo» magnético.

Faraday, que sintiéndose atraído por el tema del magnetismo al conocer las observaciones hechas, en 1820, por el físico danés Hans Christian Oersted —según las cuales una corriente eléctrica que atraviese un cable desvía la aguja de una brújula situada en su proximidad—, llegó a la conclusión de que la corriente debía de formar líneas magnéticas de fuerza en torno al cable.

Estuvo aún más seguro de ello al comprobar que el físico francés André-Marie Ampére había proseguido los estudios sobre los cables conductores de electricidad inmediatamente después del descubrimiento de Oersted. Ampére demostró que dos cables paralelos, por los cuales circulara la corriente en la misma dirección, se atraían. En cambio, se repelían cuando las corrientes circulaban en direcciones opuestas. Ello era muy similar a la forma en que se repelían dos polos norte magnéticos (o dos polos sur magnéticos), mientras que un polo norte magnético atraía a un polo sur magnético. Más aún, Ampére demostró que una bobina cilíndrica de cable atravesada por una corriente eléctrica, se comportaba como una barra imantada. En 1881, y en honor a él, la unidad de intensidad de una corriente eléctrica fue denominada, oficialmente, «ampere» o amperio.

Pero si todo esto ocurría así —pensó Faraday (quien tuvo una de las intuiciones más positivas en la historia de la Ciencia)—, y si la electricidad puede establecer un campo magnético tan parecido a uno real que los cables que transportan una corriente eléctrica pueden actuar como imanes, ¿no sería también cierto el caso inverso? ¿No debería un imán crear una corriente de electricidad que fuese similar a la producida por pilas?

En 1831, Faraday realizó un experimento que cambiaría la historia del hombre. Enrolló una bobina de cable en torno a un segmento de un anillo de hierro, y una segunda bobina, alrededor de otro segmento del anillo. Luego conectó la primera a una batería. Su razonamiento era que si enviaba una corriente a través de la primera bobina, crearía líneas magnéticas de fuerza, que se concentrarían en el anillo de hierro, magnetismo inducido que produciría, a su vez, una corriente en la segunda bobina. Para detectarla, conectó la segunda bobina a un galvanómetro, instrumento para medir corrientes eléctricas, que había sido diseñado, en 1820, por el físico alemán Johann Salomo Christoph Schweigger.

Other books

B004QGYWNU EBOK by Vargas Llosa, Mario
American Rebel by Marc Eliot
Drums of Autumn by Diana Gabaldon
Bloodborn by Kathryn Fox
Strangers by Paul Finch
El camino by Miguel Delibes
Wolf Heat by Dina Harrison
The Coming of Mr. Quin by Agatha Christie