Read Power, Sex, Suicide: Mitochondria and the Meaning of Life Online
Authors: Nick Lane
Tags: #Science, #General
The dual genomic control system (co-adaptation)—— Lapeña, A. C., Díez-Sánchez, C., Pérez-Martos, A., Montoya, J., Alvarez, E., Díaz, M., Urriés, A., Montoro, L., López-Pérez, M. J., and Enríquez J. A. Human mtDNA haplogroups associated with high or reduced spermatozoa motility.
American Journal of Human Genetics
67:
682–696; 2000.
Ballard, J. W. O., and Whitlock, M. C. The incomplete natural history of mitochondria.
Molecular Ecology
13:
729–744; 2004.
Blier, P. U., Dufresne, F., and Burton, R. S. Natural selection and the evolution of mtDNA-encoded peptides: Evidence for intergenomic co-adaptation.
Trends in Genetics
17:
400–406; 2001.
The mitochondrial bottleneckRoss, I. K. Mitochondria, sex and mortality.
Annals of the New York Academy of Sciences
1019:
581–584; 2004.
Barritt, J. A., Brenner, C. A., Cohen, J., and Matt, D. W. Mitochondrial DNA rearrangements in human oocytes and embryos.
Molecular Human Reproduction
5:
927–933; 1999.
Cummins, J. M. The role of mitochondria in the establishment of oocyte functional competence.
European Journal of Obstetrics and Gynecology and Reproductive Biology
115S:
S23–S29; 2004.
Jansen, R. P. S. Germline passage of mitochondria: Quantitative considerations and possible embryological sequelae.
Human Reproduction
15
(suppl. 2): 112–128; 2000.
Krakauer, D. C., and Mira, A. Mitochondria and germ-cell death.
Nature
400:
125–126; 1999.
Part 7Perez, G. I., Trbovich, A. M., Gosden, R. G., and Tilly, J. L. Mitochondria and the death of oocytes.
Nature
403:
500–501; 2000.
Halliwell, B., and Gutteridge, J.
Free Radicals in Biology and Medicine
. Oxford University Press, Oxford, UK, 1999.
Holliday, Robin.
Understanding Ageing
. Cambridge University Press, Cambridge, UK, 1995.
Lifespan and metabolic rateLane, Nick.
Oxygen: The Molecule that Made the World
. Oxford University Press, Oxford, UK, 2002.
Barja, G. Mitochondrial free-radical production and aging in mammals and birds.
Annals of the New York Academy Sciences
854:
224–238; 1998.
Brunet-Rossinni, A. K., and Austad, S. N. Ageing studies on bats: A review.
Biogerontology
5:
211–222; 2004.
Skulachev, V. P. Mitochondria, reactive oxygen species and longevity: Some lessons from the Barja group.
Ageing Cell
3:
17–19; 2004.
Mitochondrial theory of ageingSpeakman, J. R., Selman, C., McLaren, J. S., and Harper, E. J. Living fast, dying when? The link between ageing and energetics.
Journal of Nutrition
132
(suppl. 2): 1583S–1597S; 2002.
Harman, D. The biologic clock: The mitochondria?
Journal of the American Geriatrics Society
20:
145–147; 1972.
Failure of antioxidantsMiquel, J., Economos, A. C., Fleming, J., and Johnson, J. E., Jr. Mitochondrial role in cell ageing.
Experimental Gerontology
15:
575–591; 1980.
Barja, G. Free radicals and aging.
Trends in Neurosciences
27:
595–600; 2004.
Cutler, R. G. Antioxidants and longevity of mammalian species.
Basic Life Sciences
35:
15–73; 1985.
Mitochondrial diseasesOrr, W. C., Mockett, R. J., Benes J. J., and Sohal, R. S. Effects of overexpression of copper-zinc and manganese superoxide dismutases, catalase, and thioredoxin reductase genes on longevity in
Drosophila melanogaster
.
Journal of Biological Chemistry
278:
26418–26422; 2003.
Chinnery, P. F., DiMauro, S., Shanske, S., et al. Risk of developing a mitochondrial DNA deletion disorder.
Lancet
364:
591–596; 2004.
Fernández-Moreno, M., Bornstein, B., Petit, N., and Garesse, R. The pathophysiology of mitochondrial biogenesis: Towards four decades of mitochondrial DNA research.
Molecular Genetics and Metabolism
71:
481–495; 2000.
Marx, J. Metabolic defects tied to mitochondria gene.
Science
306:
592–593; 2004.
Schapira, A. Mitochondrial DNA and disease.
The Biochemist
27(3):
24–27; 2005.
Mitochondrial mutations in ageingWallace, D. C. Mitochondrial diseases in man and mouse.
Science
283:
1482–1488; 1999.
Coskun, P. E., Ruiz-Pesini, E., and Wallace, D. C. Control region mtDNA variants: Longevity, climatic adaptation, and a forensic conundrum.
Proceedings of the National Academy of Sciences USA
100:
2174–2176; 2003.
Lightowlers, R. N., Jacobs, H. T., and Kajander, O. A. Mitochondrial DNA—all things bad?
Trends in Genetics
15:
91–93; 1999.
Linnane, A. W., Marzuki, S., Ozawa, T., and Tanaka, M. Mitochondria DNA mutations as an important contributor to ageing and degenerative diseases.
Lancet
1 (8639):
642–645; 1989.
Michikawa, Y., Mazzucchelli, F., Bresolin, N., Scarlato, G., and Attardi, G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication.
Science
286:
774–779; 1999.
Redox signalling in mitochondriaZhang, J., Asin-Cayuela, J., Fish, J., Michikawa, Y., Bonafè, M., Olivieri, F., Passarino, G., De Benedictis, G., Franceschi, C., and Attardi, G. Strikingly higher frequency in centenarians and twins of mtDNA mutation causing remodeling of replication origin in leukocytes.
Proceedings of the National Academy of Sciences USA
100:
1116–1121; 2003.
Allen, J. F. Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genes.
Journal of Theoretical Biology
165:
609–631; 1993.
—— The function of genomes in bioenergetic organelles.
Philosophical Transactions of the Royal Society of London B: Biological Sciences
358:
19–38; 2003.
The retrograde responseLandar, A. L., Zmijewski, J. W., Oh, J. Y., and Darley Usmar, V. M. Message from the cell’s powerhouse.
The Biochemist
27(3):
9–14; 2005.
Butow, R. A., and Avadhani, N. G. Mitochondrial signaling: The Retrograde response.
Molecular Cell
14:
1–15; 2004.
Apoptosis and neurodegenerative diseasesDe Benedictis, G., Carrieri, G., Garastro, S., Rose, G., Varcasia, O., Bonafè, M., Franceschi, C., and Jazwinski, S. M. Does a retrograde response in human aging and longevity exist?
Experimental Gerontology
35:
795–801; 2000.
Coskun, P. E., Ruiz-Pesini, E., and Wallace, D. C. Control region mtDNA variants: Longevity, climatic adaptation, and a forensic conundrum.
Proceedings of the National Academy of Sciences USA
100:
2174–2176; 2003.
Proof-reading in miceWright, A. F., Jacobson, S. G., Cideciyan, A. V., Roman, A. J., Shu, X., Vlachantoni, D, McInnes, R. R., and Riemersma, R. A. Lifespan and mitochondrial control of neuro-degeneration.
Nature Genetics
36:
1153–1158; 2004.
Balaban, R. S., Nemoto, S., and Finkel, T. Mitochondria, oxidants, and aging.
Cell
120:
483–495; 2005.
Source of leakage at complex ITrifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J. N., Rovio, A. T., Bruder, C. E., Bohlooly-Y, M., Gidlof, S., Oldfors, A., Wibom, R., Tornell, J., Jacobs, H. T., and Larsson, N. G. Premature ageing in mice expressing defective mitochondrial polymerase.
Nature
429:
417–423; 2004.
Herrero, A., and Barja, G. Localization of the site of oxygen radical generation inside complex I of heart and nonsynaptic brain mammalian mitochondria.
Journal of Bioenergetics and Biomembranes
32:
609–615; 2000.
Japanese centenariansKushnareva, Y., Murphy, A. N., and Andreyev, A. Complex I-mediated reactive oxygen species generation: Modulation by cytochrome c and NAD(P)
+
oxidation state.
Biochemical Journal
368:
545–553; 2002.
Tanaka, M., Gong, J. S., Zhang, J., Yoneda, M., and Yagi, K. Mitochondrial genotype associated with longevity.
Lancet
351:
185–186; 1998.
Uncoupling, ageing and obesity—— —— —— Yamada, Y., Borgeld, H. J., and Yagi, K. Mitochondrial genotype associated with longevity and its inhibitory effect on mutagenesis.
Mechanisms of Ageing and Development
116:
65–76; 2000.
Ruiz-Pesini, E., Mishmar, D., Brandon, M., Procaccio, V., and Wallace, D. C. Effects of purifying and adaptive selection on regional variation in human mtDNA.
Science
303:
223–226; 2004.
Exercise paradoxSpeakman, J. R., Talbot, D. A., Selman, C., Snart, S., McLaren, J. S., Redman, P., Krol, E., Jackson, D. M., Johnson, M. S., and Brand, M. D. Uncoupled and surviving: Individual mice with high metabolism have greater mitochondrial uncoupling and live longer.
Aging Cell
3:
87–95; 2004.
Calorie restriction and free-radical leakageHerrero, A., and Barja, G. ADP-regulation of mitochondrial free-radical production is different with complex I- or complex II-linked substrates: Implications for the exercise paradox and brain hypermetabolism.
Journal of Bioenergetics and Biomembranes
29:
241–249; 1997.
Sex versus survivalGredilla, R., Barja, G., and López-Torres, M. Effect of short-term caloric restriction on
H
2
O
2
production and oxidative DNA damage in rat liver mitochondria and location of the free radical source.
Journal of Bioenergetics and Biomembranes
33:
279–287; 2001.
Aerobic capacity of birdsKirkwood, T. B., and Rose, M. R. Evolution of senescence: Late survival sacrificed for reproduction.
Philosophical Transactions of the Royal Society of London B: Biological Sciences
332:
15–24; 1991.
IndexMaina, J. N. What it takes to fly: The structural and functional respiratory refinements in birds and bats.
Journal of Experimental Biology
203:
3045–3064; 2000.
Italic numbers denote references to illustrations. References to footnotes are followed by ‘n.’.
absorption spectra, respiratory pigments 74–5
ADP (adenosine diphosphate) 79;
see also
ATP (adenosine triphosphate)
aerobic capacity hypothesis (evolution of endothermy) 180–5
aerobic scope 168–70
African Eve 3, 242, 246, 251
ageing:
cell loss 303
exercise paradox 273, 306
free-radical leakage 272–3, 274–5, 277, 303–11
metabolic rate 158, 269–70, 272
mitochondrial mutations 284–8, 296–301
mitochondrial theory of 4, 272–301
theories of 272–3
see also
lifespan
age-related (degenerative) diseases 4, 270, 271–2, 295–301, 303
algae, evolution of 25
Allen, John 138, 143–4,
144
, 289–90
Altmann, Richard 12–13