Unlocking the Sky (4 page)

Read Unlocking the Sky Online

Authors: Seth Shulman

BOOK: Unlocking the Sky
6.08Mb size Format: txt, pdf, ePub

Curtiss, as always, is optimistic. They can make the wings’ ribs out of solid spruce, he assures Kleckler. The spruce will be heavier than the fine, hollowed-out hardwood, but the pieces will be much cheaper and easier to construct. And the same kind of corners can be cut on the plane’s skin, he says. Silk would be lighter, but it is just too expensive; they will have to make do with the canvas the shop already has on hand.

As Curtiss explains, Professor Albert Zahm from the Smithsonian will be arriving soon to oversee the work and make sure it follows Langley’s original specifications. They can let him and Smithsonian Secretary Charles Walcott weigh in on those kinds of issues. But, he adds, it is unlikely that they or anyone will be concerned by simple substitutions for cheaper and heavier materials. The key is simply to alter the plane’s design and aerodynamic properties as little as possible.

Inside the new staging area, the workers hang the main piece of the aerodrome’s fuselage from the roof rafters to inspect it more closely. Despite the damage, the aerodrome’s steel frame is still clearly recognizable. The workers can still visually trace the aerodrome’s general system of control: from the pilot’s seat under the plane’s backbone, the lever is still there to move the now-crumpled tail up and down, as is the one designed for steering right and left, although only a broken fragment of the vertical rudder now remains.

Almost certainly, before he leaves the shop, Curtiss announces to the group his conviction that the aerodrome will fly. But, like everyone present, he knows that the proposition is highly uncertain, more of a wish than a real assessment. Hanging from its new perch, the hollow steel carcass of the aerodrome looks like it might be more at home in the Smithsonian’s collection of fossilized dinosaur skeletons.

In the first weeks of work the biggest revelation for Kleckler and his team is the engine. Although it has been thoroughly waterlogged and subjected to more than a decade of neglect, there is no question about the sophistication of its design. Workers repeatedly marvel at its resemblance to the new aircraft engines the Curtiss plant builds. By 1914, the Curtiss Aeroplane Company, like most modern aircraft manufacturers, has shown a preference for radial designs, similar to the one pioneered by Manly, in which the engine’s five cylinders are arranged around a central hub like a bulbous five-pointed star. Manly’s means of cooling the engine was also ahead of its time, employing a water cooling system to help dissipate the intense heat generated by the engine.

Before long, Charles Manly himself, Langley’s close assistant and chief mastermind behind the aerodrome engine, will make the
pilgrimage to Hammondsport to lend a hand rebuilding the aerodrome. Manly has long since gone on to design and manufacture trucks with hydraulic controls, but he is understandably elated that the aerodrome will finally get another chance to prove itself airworthy. Like so many others, Manly has spoken often of retesting Langley’s machine. He brought up the issue in 1908 with the Smithsonian when he became one of the founders of the Aero Club of America. And he noted publicly in 1911, when Langley’s papers were posthumously published, that he hoped eventually to raise the funds to do the job himself.

Even with Manly’s help, though, Walter Johnson—who worked closely with Kleckler on the project—recalls, they could never keep the motor hitting on all five cylinders. The team gave the engine a hotter spark, using the more up-to-date magneto ignition instead of the previous dry-cell batteries, but for all their efforts, they could only get the motor to develop two-thirds to three-quarters of the horsepower it had originally demonstrated. A decade of rust after its immersion in the Potomac had simply taken too big a toll for it to be brought back to its original condition.

The team members know that the lack of horsepower will greatly jeopardize the plane’s chances of getting aloft. But they are determined to fly the aerodrome with Langley’s original engine. Ultimately, only the engine’s carburetor will be changed, and that only because Kleckler can’t understand the workings of the original mechanism well enough to try to restore it. But even the worries about the sufficiency of the motor’s now-diminished power don’t change the high esteem Kleckler and his team hold for Manly’s superb piece of engineering.

The farsightedness of Manly’s engine design is all the more remarkable because so much else had changed since he first built it.
While the aerodrome was collecting dust in storage at the Smithsonian Institution, a full-blown technological renaissance had transformed the world. In fact, in the course of human history it would be hard to find a more eventful decade of dramatic technological change than the one Langley’s aerodrome had quietly missed while boxed up in that back room.

The first decade of the twentieth century saw the advent or ascension of a host of revolutionary technologies, including the telephone, electric lighting, and power transmission, the automobile, the radio, the phonograph, and motion pictures. People were staggered by the changes and the world had never seemed so full of possibilities or so unsettled by them. Inventors like Edison, Dow, Deere, Westinghouse, and many others laid the foundation for a new corporate America, which, in that fateful first decade of the twentieth century, quietly began to surpass all other nations in the production of most tangible commodities from coal and chemicals to steel and heavy machinery.

Technology’s latest offerings were cropping up everywhere. Henry Ford’s Model T, introduced in 1908, had begun literally to make over the landscape at home while, by 1914, the opening of the Panama Canal reshaped it on an unimaginably vast continental scale. It seemed as though there was almost nothing that technology couldn’t accomplish. And the field of aviation was as good an example as you could find.

Perhaps nothing illustrated the pace of change better than this single fact: One September day in 1913, just months before the aerodrome’s arrival, a pilot named Lincoln Beachey strode into the Hammondsport plant and asked Curtiss to build him an airplane that could “loop the loop.” Beachey, indisputably the greatest and most fearless stunt aviator of the day, wanted an engine “more than
twice as strong as any of the standard makes,” whose gas flow wouldn’t be cut off by flying upside down. As part of the package, he specified that the plane be built with a special harness that would fasten him in for the stunt. The ever-prudent Curtiss was reluctant, viewing the idea as brazen and needlessly risky. But Beachey, the equivalent of a modern-day rock star or Hollywood celebrity who drew huge and enthusiastic crowds to all his venues, was a hard man to decline.

By Thanksgiving, in a special plane Curtiss built for him, Beachey was astounding huge crowds as the world’s first pilot to fly multiple loops in the air.
*

All of which might well lead one to wonder, if Curtiss could so handily build a plane that could loop the loop, why would he ever be so keen to try to rebuild Langley’s ancient and outmoded aerodrome?

The answer, at least on one level, is that, by 1914, the youthful aviation industry was undergoing an identity crisis. The strange, unresolved saga of the aerodrome had left a persistent and nagging question about how the history of the airplane should be told. And with some of the field’s doyens reaching the end of their lives, the question was one of more than idle import. Almost from the time of the aerodrome’s crash, for instance, Alexander Graham Bell had called for resurrecting the aerodrome. Octave Chanute, another of Langley’s contemporaries and one of the earliest aviation researchers in the country declared in 1909, for example: “There is no doubt that if the [Langley] machine had been properly launched it would have flown. The machine is still in existence,” he noted,
calling it “most unfortunate that further effort had never been made” to test it.

Meanwhile, the seed for Curtiss’s involvement in the project was planted in 1913 when the Smithsonian Institution awarded him the Langley Medal, the nation’s highest aviation award. The award had been inaugurated in 1908, several years after Langley’s death, and presented to the Wright brothers for their successful pioneering flights at Kitty Hawk. Since then, no achievement in aviation had been deemed worthy of the honor until the board voted to recognize Curtiss for his recent invention of the hydro-aeroplane, now known as the seaplane.

On May 6, 1913, at the ceremony for the presentation of the Langley Medal, Alexander Graham Bell made the lengthy tribute to Curtiss before a Washington, D.C., audience, which included a diehard contingent of aviation buffs dedicated to Langley’s memory. Among the old gang of Langley supporters were Charles Walcott, who succeeded Langley as secretary of the Smithsonian; General James Allen, president of the Aero Club of Washington; Samuel B. McCormick, chancellor of the University of Pittsburgh, where Langley had held a chair in astronomy before coming to Washington; and Langley’s close former assistant Dr. John A. Brashear, who was given the honor of unveiling a tablet dedicated to Langley at the event.

“I simply wish to express my feelings of gratitude and pleasure,” the always shy Curtiss remarked upon accepting the medal—a medallion fashioned from a pound of solid gold. Even at this stage in his career, Curtiss was uncomfortable making speeches. But he had quickly picked up on the tenor of the evening, adding, “As I look at the Langley models here, it becomes more evident to me than ever before—the merit of these machines and the great work
which Mr. Langley did.” Ending his remarks to a flood of applause Curtiss noted, “I cannot say too much in favor and in memory of Professor Langley.”

There is no evidence that the idea to rebuild Langley’s plane was formally hatched at this event, but there is little doubt that the notion crossed many minds before the evening was over. Like the rest of the audience, Curtiss was doubtless moved by Brashear’s almost maudlin lament about the last half hour he spent in Langley’s office. Brashear recalled that Langley had shown him a small piece that had broken off from the aerodrome’s launching mechanism that he believed had foiled the fateful attempt. “With a sad heart he turned to me and with trembling voice said, ‘Mr. Brashear, this has wrecked my hopes forever. My life work is a failure.’ I did all in my power to cheer and comfort him, but it was too late.

“Soon after that,” Brashear continued, “he passed away, and I have often—aye many, many times—thought of that last sad half-hour spent with him. He was a noble man, and his works, though suddenly cut off by death, will live as long as this old world shall have dwellers upon it.”

If remarks like Brashear’s brought Langley’s sad tale back to the attention of many in the field of aviation, the opportunity to restore the aerodrome was greatly enhanced by the Smithsonian’s recent establishment of a new department called the Langley Aerodynamical Research Laboratory. Headed by Dr. Albert F. Zahm, a noted aeronautical scholar of the period, the new lab was designed to spearhead American theoretical flight research.

Whereas Langley’s many supporters viewed a restoration of the aerodrome as a means to reclaim his reputation for posterity, Zahm hoped the aircraft might also help to establish the standing of his fledgling laboratory. In particular, the past several years had seen an
alarming number of fatalities. At least eight aviators had been killed in highly publicized crashes in 1913 alone. Zahm had noted that most of the crashes occurred when the planes lost fore and aft stability, leading to a sudden, uncontrolled dive. He believed that his new lab could help the aviation industry by reviewing the tandem principle adopted by Langley to see whether Langley’s design might “lessen, if not entirely prevent a fatal dive.”

In interviews in Hammondsport after Zahm’s arrival, Curtiss explains his undoubtedly heartfelt admiration for Langley. And he echoes Zahm’s hope that experimenting with Langley’s tandem-wing design might, as he put it, “affect the form and structure of aeroplanes” in the future. But Curtiss has another reason to try to resurrect the old aerodrome—a reason so urgent and explosive that it will, as his friend and colleague Lyman Seely puts it, ultimately help spawn “the most persistent and the most misleading propaganda ever attending a scientific test.”

TWO
WRIGHTS AND WRONGS

In Hammondsport, the old-timers used to say that if you jumped up in the air and flapped your arms you’d be infringing on the Wrights’ patent.

—T
ONY
D
OHERTY, SON OF
C
URTISS’S ASSISTANT
E
LLWOOD
“G
INK”
D
OHERTY

B
y the time the aerodrome arrives in Hammondsport in the spring of 1914, Glenn Curtiss faces an extraordinary situation. He has won almost unanimous admiration from practitioners in aviation around the world. His airplanes have broken distance, speed, and altitude records. But in January, the U.S. Court of Appeals has just handed down a permanent injunction that prohibits Curtiss from manufacturing or even exhibiting his aircraft in the United States without a license from Orville Wright. And, despite Curtiss’s repeated attempts to negotiate, Wright has announced that he will consider lenient royalty arrangements with anyone in the field
except
Curtiss.

In a startlingly broad interpretation of the Wright brothers’ patent, the courts have sanctioned their exclusive claim to the sole practical means of stabilizing an aircraft in flight. As the Wrights had hoped, their sweeping patent has become, in effect, a patent on the airplane. And especially since the death of his brother Wilbur in 1912, Orville Wright is in no mood to compromise: he unwaveringly demands 20 percent of the revenue generated by any competitors’ airplanes whether through their sale or exhibition.

As a result, unless Curtiss decides to move his company to another country that does not recognize the Wright patent claims, he will be forced to either cease his operations or pay such a crippling mountain of back royalties on the planes he has already sold or flown that he will surely be bankrupted.

There is also no question that the feud has become personal. In a front-page interview in the
New York Times
in February 1914, Orville accuses Curtiss of stealing the Wrights’ designs and even blames him for Wilbur Wright’s death from typhoid fever. According to Orville, Wilbur’s agitation over the case “worried him to his death…first into a state of chronic nervousness, and then into a physical fatigue which made him an easy prey for the attack of typhoid which caused his death.”

Calling Orville’s claims “absurd, if not malicious,” Curtiss publicly retorts that he never “had an item of information” from the Wright brothers that helped him build his airplanes. As for the contention about Wilbur’s death, Curtiss describes it as a bunch of “insinuations easily interpreted as such untruths as I cannot believe Mr. Wright, or any other sane man, ever made.”

Curtiss has repeatedly appealed to the Wrights for a settlement. With no success in negotiations and no satisfaction in court, he has few remaining options. In a move born of desperation, Curtiss
embarks on the aerodrome restoration as an ambitious effort to set the record straight.

The Smithsonian’s involvement in restoring Langley’s aerodrome lends an aura of objectivity but, in 1914, the question of Langley’s contribution to aviation is of more than academic interest to Curtiss. He knows that if Langley’s plane flies, it could raise profound doubts about the Wrights’ claim to being the first with a “useful” aeronautical invention.

In fact, Curtiss is quite candid about his motives. As he writes to Lincoln Beachey, another target of the Wrights’ patent claims, the aerodrome restoration “would go a long way toward showing that the Wrights did not invent the flying machine as a whole but only a balancing device.” If they are successful in getting the aerodrome to fly, he says, perhaps in court “we would get a better decision next time.”

 

Today, nearly a century into the age of aviation, the Wright brothers have become a part of our collective mythology—lone inventors who single-handedly turned a fantastic dream into a practical reality. Of course, the myth captures a truly monumental achievement. But it also willfully ignores half of the Wright brothers’ story, obscuring the role the Wrights played once their invention took flight.

Now largely forgotten, the Wrights made no secret of the fact that they sought a monopoly on production of the airplane comparable to the one Alexander Graham Bell had won for the telephone. After all, monopoly was the hallmark of the Wright brothers’ era—the Gilded Age—with vast, vertically integrated empires of oil and steel built by titans like Rockefeller and Carnegie. Securing monopoly
control of the commercial airplane was the linchpin of the Wrights’ business strategy. It helped them to attract a bevy of heavyweight backers that came to be known in many circles as the Wall Street Air Trust, including powerful financiers like Robert Collier, August Belmont, and Cornelius Vanderbilt.

With the help of Vanderbilt and the others, the Wright brothers came close to achieving monopoly control over airplane production in the United States through broad patents and aggressive business tactics. But unlike Bell’s phone lines, which were conducive to a centralized monopoly, the chaotic, creative drive to conquer the sky in the first decade of the twentieth century would prove exceedingly difficult for the Wrights to contain. And the biggest obstacle they faced was their most formidable competitor: Glenn Curtiss.

After the appeals court decision in 1914, Orville Wright boasted to the press that the Wright Company had secured “absolute control” of the emerging airplane industry. His remark was delivered with a shrewd eye toward his company’s investors but a remarkable blindness to its effect on the industry.

The truth is, by this time, the Wrights’ handling of their proprietary rights over the course of nearly a decade had already alienated most of their colleagues in the young aviation field. Even Grover Loening, a loyal friend to the Wrights and onetime chief engineer of the Wright Company noted later that, by filing suit—and, in particular, by prosecuting their case so aggressively against Curtiss—the brothers “turned the hand of almost every man in aviation against them.”

The Wrights’ legal case against Curtiss hinged on a particular technical issue. The Wright brothers had solved the difficult problem of stabilizing an aircraft by making the wings of their planes flexible. In their patented “wing warping” method, the Wrights
twisted the airplane’s wings in a system wired to the plane’s rudder. When the Wrights steered their airplane, their wing-warping system twisted each wing slightly in the opposite direction to help the plane bank on turns without losing control. Although some of the most respected aviation pioneers claimed the underlying principle was well known for as many as fifty years before the Wrights, their wing-warping stabilizing device was nevertheless an important advance that helped the airplane achieve controlled flight.

From the first plane Curtiss ever built, he and his team solved the stability problem in a related, but notably different way. Realizing that the function of the rudder and the need for lateral stability were separate, they designed flaps on the wings, so-called ailerons.
*
Like the Wrights’ technology, the ailerons on each wing tilt in opposite directions to stabilize the aircraft. Unlike the Wrights’ design, however, the ailerons operate separately from the plane’s fixed wings and from its rudder. Ailerons rapidly became the industry standard. With them, an airplane’s wings could be made rigid and much stronger, and they allowed the plane to remain stable independent of its steering mechanism.

Curtiss and most other aviators of the day argued that the aileron was a significant and distinct advance that should not be legally covered by the Wrights’ claims. In essence, though, the Wrights claimed that their completion of the first proven invention to solve the problem of lateral stability gave them rights to any subsequent design, including ailerons. The Wrights’ patent itself repeatedly spells out this contention: “We do not wish to be understood as limiting ourselves strictly to the precise details of construction herein
before described,” the Wrights’ lawyers write at virtually every point in which the patent spells out the particulars of the brothers’ wing-warping technique. “We do not limit ourselves to the particular description of rudder set forth…” it reads when they describe the rudder. And, importantly, when they describe the way the wings can be flexed, the patent states: “Our invention is not limited to this particular construction.”

With such all-encompassing language passing muster at the U.S. Patent Office, the Wrights’ lawyers argued that it mattered not that wing warping was virtually obsolete within six years from the time the patent was issued. Nor was it relevant that even the Wright Company would quietly begin to abandon wing warping in favor of ailerons by as early as 1915. As their lawyers argued, the Wrights had been granted exclusive rights to all known means to laterally stabilize an airplane; now Orville Wright could legally exercise this exclusive proprietary claim however he wished.

 

It is a detail lost to history exactly when Orville Wright first learned that Curtiss and the Smithsonian team intended to restore Langley’s aerodrome. Most likely, he read it in his morning newspaper as did other Americans early in the spring of 1914.

We can imagine him at home with his older sister Katharine and his father, Bishop Milton Wright, in their new mansion on Hawthorne Hill, southeast of Dayton, Ohio, reading the news, his cheeks flushing with rage. Not one to easily voice his anger, Orville might well have risen from the breakfast table in a wordless fury to pace and fume outside on the grand porch above his stately, sloping lawn.

Or perhaps not.

The particulars of the scene may have been forgotten, but we do know something about the degree of Orville’s distress over the aerodrome affair. Legal ramifications aside, he took the restoration of Langley’s airplane as a personal affront and believed that Smithsonian Secretary Charles Walcott was colluding with Curtiss in a plot to steal his and Wilbur’s rightful claim to being the first in flight. In the coming weeks and months, a wide variety of visitors to Hawthorne Hill note Orville and Katharine’s agitation over the matter with some alarm.

According to historian C. R. Roseberry, Ohio governor and Wright family friend James Cox was taken aback with the vociferous way the usually demure Katharine denounced Curtiss’s aerodrome project as “a fake…so raw that it seems incredible.” Holden C. Richardson, who would go on to become a captain in the U.S. Navy, was an overnight guest in the Wright home during this period. “Katharine especially was terribly bitter toward Curtiss,” Richardson remembers, and couldn’t seem to forgive him. Moreover, he recalls, because he was known to be a friend of Curtiss’s at the time, Katharine had difficulty treating Richardson himself with civility.

Grover Loening, then chief engineer of the Wright Company, worried that Orville and Katharine’s dislike of Curtiss was getting the better of them, “preying on their minds and characters.” The aerodrome restoration, he says, became a “great hate and obsession” in the Wright household, “It was,” Loening recalls, “a constant subject of conversation, and the effort of Curtiss and his group to take credit away from the Wrights was a bitter thing to stand for.”

No one would take the matter more to heart, however, than Griffith Brewer.

Brewer was an English attorney who had met the Wrights in Europe, had helped them secure financing for the British Wright
Company, Ltd., and had fought to protect their patent rights and collect unpaid royalties in England. During the spring of 1914, Brewer was invited to spend three months as a guest at Hawthorne Hill. He had recently signed a contract to write a book on the emerging aviation industry. But, given the timing of his stay, it is not surprising that his project was waylaid. Instead, Orville convinced Brewer to go check up on the Langley restoration project. As Brewer would note later, Orville dispatched him on a mission “to go to Hammondsport and find out what Glenn Curtiss was doing to falsify the history of aviation.”

Brewer made the trip, writing later that he felt “like a detective going into hostile country, where I should get rough handling if my mission were known.” He never let on who he was, but he managed to catalog an impressive laundry list of changes Curtiss’s team was making to the aerodrome. He then wrote a prominent letter to the
New York Times
about the case. Many of the entries on Brewer’s list of technical objections seem petty, such as his contention that the Curtiss team had installed a modern carburetor or that the aircraft’s Penaud tail had been positioned twenty inches higher in the rebuilt version than in the original. But Brewer did successfully cast doubt on the motives behind the experiment. In the most obvious and stinging of his accusations, Brewer asked: “Why, if such a demonstration were decided on, was not some impartial, unprejudiced person chosen to make the tests, instead of the person who had been found guilty of infringement of the Wright patent?”

Brewer’s complaint resonated because, indeed, the team restoring Langley’s aerodrome did have serious conflicts of interest. But rightly or wrongly, Zahm and Walcott always considered themselves to be impartial observers of the operation under the auspices of the Smithsonian. And, as Brewer undoubtedly knew, given the
state of the industry at the time, there were few other candidates as qualified as Curtiss to undertake such a restoration. Zahm’s fledgling aerodynamical laboratory was not equipped with the personnel to do the job and the Smithsonian would certainly have had no luck appealing to the Wright Company. Furthermore, aware of their delicate position, Curtiss and his team allowed the work to be open to the scrutiny of the press from the first. Many newspapers had already reported on many of the modifications Brewer trumpeted, outlining the changes the Curtiss team was forced to make in the restoration process for reasons of cost, safety, and expediency.

Nonetheless, for the next seven years, Brewer would repeatedly broadcast these modifications to the aerodrome in a determined effort to disparage Curtiss and the restoration project. In published writings and lectures on both sides of the Atlantic, he lambasted the restoration of Langley’s aircraft as a premeditated hoax designed to blacken the Wrights’ name.

Meanwhile, Orville was sufficiently exercised by Curtiss’s activities that before the incident was over, he would also dispatch his older brother Lorin to Hammondsport to surreptitiously gather evidence of any changes the Curtiss team was making to the Langley plane to help discredit the undertaking in court. Armed with camera and binoculars, Lorin lurked around the hangars at Hammondsport, returning to stay in a hotel in the nearby town of Bath under the pseudonym of W. L. Oren. “I came here as I was afraid to telegraph from Hammondsport,” he wired Orville during his visit. According to Lorin’s account, he even had an altercation with Curtiss assistant Walter Johnson, who became suspicious of him and demanded that he either identify himself or hand over the film from his camera. Lorin reluctantly surrendered the film, but never divulged his identity or his mission.

Other books

Ashes by Ilsa J. Bick
Lupus Rex by John Carter Cash
Tangled Mess by Middleton, K.L.
A Killer in Winter by Susanna Gregory
Rescued: A Festive Novella by Brooker, J'aimee
The Red Thread by Dawn Farnham