Introducción a la ciencia I. Ciencias Físicas (57 page)

BOOK: Introducción a la ciencia I. Ciencias Físicas
9.03Mb size Format: txt, pdf, ePub
ads

Una prueba más, y los científicos atómicos tendrían la respuesta a la periodicidad de la tabla periódica. Se puso de manifiesto que la radiación de electrones de un determinado elemento no estaba necesariamente restringida a una longitud de onda única; podía emitir radiaciones de dos, tres, cuatro e incluso más longitudes de onda distintas. Estas series de radiaciones fueron denominadas K, L, M, etc. Los investigadores interpretaron esto como una prueba de que los electrones estaban dispuestos en «capas» alrededor del núcleo del átomo de carga positiva. Los electrones de la capa más interna eran sujetados con mayor fuerza, y para conseguir su separación se necesitaba la máxima energía, es decir, de longitudes de onda más corta, o de la serie K. Los electrones de la capa siguiente emitían la serie L de radiaciones; la siguiente capa producía la serie M, etc. En consecuencia, estas capas fueron denominadas K, L, M, etc.

Hacia 1925, el físico austríaco Wolfgang Pauli enunció su «principio de exclusión», el cual explicaba la forma en que los electrones estaban distribuidos en el interior de cada capa, puesto que, según este principio, dos electrones no podían poseer exactamente la misma energía ni el mismo
spin
. Por este descubrimiento, Pauli recibió el premio Nobel de Física en 1945.

Los gases nobles o inertes

En 1916, el químico americano Gilbert-Newton Lewis determinó las similitudes de las propiedades y el comportamiento químico de algunos de los elementos más simples sobre la base de su estructura en capas. Para empezar, había pruebas suficientes de que la capa más interna estaba limitada a dos electrones. El hidrógeno sólo tiene un electrón; por tanto, la capa está incompleta. El átomo tiende a completar esta capa K, y puede hacerlo de distintas formas. Por ejemplo, dos átomos de hidrógeno pueden compartir sus respectivos electrones y completar así mutuamente sus capas K. Ésta es la razón de que el hidrógeno se presente casi siempre en forma de un par de átomos: la molécula de hidrógeno. Se necesita una gran cantidad de energía para separar los dos átomos y liberarlos en forma de «hidrógeno atómico». Irving Langmuir, de la «General Electric Company» —quien, independientemente, llegó a un esquema similar, que implicaba los electrones y el comportamiento químico— llevó a cabo una demostración práctica de la intensa tendencia del átomo de hidrógeno a mantener completa su capa de electrones. Obtuvo una «antorcha de hidrógeno atómico» soplando gas de hidrógeno a través de un arco eléctrico, que separaba los átomos de las moléculas; cuando los átomos se recombinaban, tras pasar el arco, liberaban las energías que habían absorbido al separarse, lo cual bastaba para alcanzar temperaturas superiores a los 3.400 °C.

En el helio (elemento 2), la capa K está formada por dos electrones. Por tanto, los átomos de helio son estables y no se combinan con otros átomos. Al llegar al litio (elemento 3), vemos que dos de sus electrones completan la capa K y que el tercero empieza la capa L. Los elementos siguientes añaden electrones a esta capa, uno a uno: el berilio tiene 2 electrones en la capa L; el boro, 3; el carbono, 4; el nitrógeno, 5; el oxígeno, 6; el flúor, 7, y el neón 8. Ocho es el límite para la capa L, por lo cual el neón, lo mismo que el helio, tiene su capa exterior de electrones completa. Y, desde luego, es también un gas inerte, con propiedades similares a las del helio.

Cada átomo cuya capa exterior no está completa, tiende a combinarse con otros átomos, de forma que pueda completarla. Por ejemplo, el átomo de litio cede fácilmente su único electrón en la capa L, de modo que su capa exterior sea la K, completa, mientras que el flúor tiende a captar un electrón, que añade a los siete que ya tiene, para completar su capa L. Por tanto, el litio y el flúor tienen afinidad el uno por el otro; y cuando se combinan, el litio cede su electrón L al flúor, para completar la capa L exterior de este último. Dado que no cambia las cargas positivas del interior del átomo, el litio, con un electrón de menos, es ahora portador de una carga positiva, mientras que el flúor, con un electrón de más, lleva una carga negativa. La mutua atracción de las cargas opuestas mantiene unidos a los dos iones. El compuesto se llama fluoruro de litio.

Los electrones de la capa L pueden ser compartidos o cedidos. Por ejemplo, uno de cada dos átomos de flúor puede compartir uno de sus electrones con el otro, de modo que cada átomo tenga un total de ocho en su capa L, contando los dos electrones compartidos. De forma similar, dos átomos de oxígeno compartirán un total de cuatro electrones para completar sus capas L; y dos átomos de nitrógeno compartirán un total de 6. De este modo, el flúor, el oxígeno y el nitrógeno forman moléculas de dos átomos.

El átomo de carbono, con sólo cuatro electrones en su capa L, compartirá cada uno de ellos con un átomo distinto de hidrógeno, para completar así las capas K de los cuatro átomos de hidrógeno. A su vez, completa su propia capa L al compartir
sus
electrones. Esta disposición estable es la molécula de metano CH
4
.

Del mismo modo, un átomo de nitrógeno compartirá los electrones con tres átomos de hidrógeno para formar el amoníaco; un átomo de oxígeno compartirá sus electrones con dos átomos de hidrógeno para formar el agua; un átomo de carbono compartirá sus electrones con dos átomos de oxígeno para formar anhídrido carbónico; etc. Casi todos los compuestos formados por elementos de la primera parte de la tabla periódica pueden ser clasificados de acuerdo con esta tendencia a completar su capa exterior cediendo electrones, aceptando o compartiendo electrones.

El elemento situado después del neón, el sodio, tiene 11 electrones, y el undécimo debe empezar una tercera capa. Luego sigue el magnesio, con 2 electrones en la capa M; el aluminio, con 3; el silicio, con 4; el fósforo, con 5; el azufre, con 6; el cloro, con 7, y el argón, con 8.

Ahora bien, cada elemento de este grupo corresponde a otro de la serie anterior. El argón, con 8 electrones en la capa M, se asemeja al neón (con 8 electrones en la capa L) y es un gas inerte. El cloro, con 7 electrones en su capa exterior, se parece mucho al flúor en sus propiedades químicas. Del mismo modo, el silicio se parece al carbono; el sodio, al litio, etc. (fig. 6.2).

Fig. 6.2. Cesión y compartimento de electrones. El litio cede el electrón de su capa exterior al flúor, en la combinación fluoruro de litio; cada átono tiene entonces una capa eterna completa. En la molécula de flúor (F
2
), se comparten dos electrones, que completan las capas exteriores de ambos átomos.

Así ocurre a lo largo de toda la tabla periódica. Puesto que el comportamiento químico de cada elemento depende de la configuración de los electrones de su capa exterior, todos los que, por ejemplo, tengan un electrón en la capa exterior, reaccionarán químicamente de un modo muy parecido. Así, todos los elementos de la primera columna de la tabla periódica —litio, sodio, potasio, rubidio, cesio e incluso el francio, el elemento radiactivo hecho por el hombre— son extraordinariamente parecidos en sus propiedades químicas. El litio tiene 1 electrón en la capa L; el sodio, 1 en la M; el potasio, 1 en la N; el rubidio, 1 en la O; el cesio, 1 en la P, y el francio, 1 en la Q. Una vez más, se parecen entre sí todos los elementos con siete electrones en sus respectivas capas exteriores (flúor, cloro, bromo, yodo y astato). Lo mismo ocurre con la última columna de la tabla, el grupo, de capa completa, que incluye el helio, neón, argón, criptón, xenón y radón.

El principio de Lewis-Langmuir se cumple de forma tan perfecta, que sirve aún, en su forma original, para explicar las variedades de comportamiento más simples y directas entre los elementos. Sin embargo, no todos los comportamientos son tan simples ni tan directos como pueda creerse.

Por ejemplo, cada uno de los gases inertes —helio, neón, argón, criptón, xenón y radón— tiene ocho electrones en la capa exterior (a excepción del helio, que tiene dos en su única capa), situación que es la más estable posible. Los átomos de estos elementos tienen una tendencia mínima a perder o ganar electrones, y, por tanto, a tomar parte en reacciones químicas. Estos gases, tal como indica su nombre, serían «inertes».

Sin embargo, una «tendencia mínima» no es lo mismo que «sin tendencia alguna»; pero la mayor parte de los químicos lo olvidó, y actuó como si fuese realmente imposible para los gases inertes formar compuestos. Por supuesto que ello no ocurría así con todos. Ya en 1932, el químico americano Linus Pauling estudió la facilidad con que los electrones podían separarse de los distintos elementos, y observó que todos los elementos sin excepción, incluso los gases inertes, podían ser desprovistos de electrones. La única diferencia estribaba en que, para que ocurriese esto, se necesitaba más energía en el caso de los gases inertes que en el de los demás elementos situados junto a ellos en la tabla periódica.

La cantidad de energía requerida para separar los electrones en los elementos de una determinada familia, disminuye al aumentar el peso atómico, y los gases inertes más pesados, el xenón y el radón, no necesitan cantidades excesivamente elevadas. Por ejemplo, no es más difícil extraer un electrón a partir de un átomo de xenón que de un átomo de oxígeno.

Por tanto, Pauling predijo que los gases inertes más pesados podían formar compuestos químicos con elementos que fueran particularmente propensos a aceptar electrones. El elemento que más tiende a aceptar electrones es el flúor, y éste parecía ser el que naturalmente debía elegirse.

Ahora bien, el radón, el gas inerte más pesado, es radiactivo y sólo puede obtenerse en pequeñísimas cantidades. Sin embargo, el xenón, el siguiente gas más pesado, es estable y se encuentra en pequeñas cantidades en la atmósfera. Por tanto, lo mejor sería intentar formar un compuesto entre el xenón y el flúor. Sin embargo, durante 30 años no se pudo hacer nada a este respecto, principalmente porque el xenón era caro, y el flúor, muy difícil de manejar, y los químicos creyeron que era mejor dedicarse a cosas menos complicadas.

No obstante, en 1962, el químico anglocanadiense Neil Bartlett, trabajando con un nuevo compuesto, el hexafluoruro de platino (F
6
Pt), manifestó que se mostraba notablemente ávido de electrones, casi tanto como el propio flúor. Este compuesto tomaba electrones a partir del oxígeno, elemento que tiende más a ganar electrones que a perderlos. Si el F
6
Pt podía captar electrones a partir del oxígeno, debía de ser capaz también de captarlos a partir del xenón. Se intentó el experimento, y se obtuvo el fluoroplatinato de xenón (F
6
PtXe), primer compuesto de un gas inerte.

Otros químicos se lanzaron en seguida a este campo de investigación, y se obtuvo cierto número de compuestos de xenón con flúor, con oxígeno o con ambos, el más estable de los cuales fue el difluoruro de xenón (F
2
Xe). Formóse asimismo un compuesto de criptón y flúor: el tetrafluoruro de criptón (F
4
Kr), así como otros de radón y flúor. También se formaron compuestos con oxígeno. Había, por ejemplo, oxitetrafluoruro de xenón (OF
4
Xe), ácido xénico (H
2
O
4
Xe) y perxenato de sodio (XeO
6
Na
4
), que explota fácilmente y es peligroso. Los gases inertes más livianos — argón, neón y helio— ofrecen mayor resistencia a compartir sus electrones que los más pesados, por lo cual permanecen inertes (según las posibilidades actuales de los químicos).

Los químicos no tardaron en recuperarse del shock inicial que supuso descubrir que los gases inertes podían formar compuestos. Después de todo, tales compuestos encajaban en el cuadro general. En consecuencia, hoy existe una aversión general a denominar «gases inertes» a estos elementos. Se prefiere el nombre de «gases nobles», y se habla de «compuestos de gases nobles» y «Química de los gases nobles». (Creo que se trata de un cambio para empeorar. Al fin y al cabo, los gases siguen siendo inertes, aunque no del todo. En este contexto, el concepto «noble» implica «reservado» o «poco inclinado a mezclarse con la manada», lo cual resulta tan inapropiado como «inerte» y, sobre todo, no anda muy de acuerdo con una «sociedad democrática».)

Los elementos tierras raras

El esquema de Lewis-Langmuir que se aplicó demasiado rígidamente a los gases inertes, apenas puede emplearse para muchos de los elementos cuyo número atómico sea superior a 20. En particular se necesitaron ciertos perfeccionamientos para abordar un aspecto muy sorprendente de la tabla periódica, relacionado con las llamadas «tierras raras» (los elementos 57 al 71, ambos inclusive).

Retrocediendo un poco en el tiempo, vemos que los primeros químicos consideraban como «tierra» —herencia de la visión griega de la «tierra» como elemento— toda sustancia insoluble en agua y que no pudiera ser transformada por el calor. Estas sustancias incluían lo que hoy llamaríamos óxido de calcio, óxido de magnesio, bióxido silícico, óxido férrico, óxido de aluminio, etc., compuestos que actualmente constituyen alrededor de un 90 % de la corteza terrestre. Los óxidos de calcio y magnesio son ligeramente solubles, y en solución muestran propiedades «alcalinas» (es decir, opuestas a las de los ácidos), por lo cual fueron denominados «tierras alcalinas»; cuando Humphry Davy aisló los metales calcio y magnesio partiendo de estas tierras, se les dio el nombre de metales alcalinotérreos. De la misma forma se designaron eventualmente todos los elementos que caben en la columna de la tabla periódica en la que figuran el magnesio y el calcio; es decir, el berilio, estroncio, bario y radio.

BOOK: Introducción a la ciencia I. Ciencias Físicas
9.03Mb size Format: txt, pdf, ePub
ads

Other books

Alpha Rising by Rebecca Royce
The Wedding Quilt by Jennifer Chiaverini
Barrel Fever by Sedaris, David
Undertow by Kingston, Callie
Dancing Through Life by Candace Cameron Bure, Erin Davis
Red Rocks by King, Rachael