Read The King of Infinite Space Online
Authors: David Berlinski
Associative laws,
105
Associative operation,
142
Assumptions,
11
,
12
,
27
,
45
,
46
,
55
,
83
,
119
of existence of points/lines/planes,
49
,
107
hidden,
30â31
that the parallel postulate is false,
120
,
121
Atiyah, Michael,
91
Axiomatic systems,
11
,
12
,
14
,
149
and arguments,
17
new,
107
as way of life,
9
,
106
,
148
,
152
,
156
Archimedean axiom,
108â109
Cantor-Dedekind axiom,
100
of connection, order, congruence and continuity,
107
consistency/inconsistency of,
106â107
,
131
fifth axiom,
53â56
,
118
(
see also
Axioms: Playfair's axiom
;
Parallel postulate
)
first axiom,
113â114
first three axioms,
46
,
48â49
,
51
,
61
,
66
,
86
fourth proposition as axiom,
27
interpreted in arithmetic,
113â114
made theorems,
46
of neutral geometry,
131
Playfair's axiom,
54
,
55
,
91
,
137
,
138
relationship between axioms and theorems,
12
,
14
,
19
,
149
as self-evident,
46
See also
Axiomatic systems
Bacon, Francis,
77
Beltrami, Eugenio,
121
,
132â133
Bolyai, János,
118
,
122â123
,
126
,
127â128
Bolyai, Farkas,
127â128
Boole, George,
23
Boundaries,
160
Bridge of Asses,
64
,
65(fig.)
.
See also
Propositions: fifth proposition
of segments,
110
Cantor, Georg,
93
Cantor-Dedekind axiom,
100
,
101
,
109
Cathedrals,
64
Causality,
13
Cézanne, Paul,
152
Chesterton, G. K.,
11
China,
9
Cicero,
1
center/circumference of,
98
,
130
,
135
,
136
,
160
diameter of,
160
and geodesics,
125
and proposition one,
61â62
semicircles,
160
See also
Poincaré, Henri: Poincaré disk
Clay tablets,
8
Coincidence,
21
,
23
,
25â26
,
27
,
39
,
41
,
67
and concrete vs. abstract models of geometry,
28â29
Common beliefs/notions,
19â32
,
90
fifth,
29â30
first,
24
fourth,
23
Common sense,
36
,
64
,
91
,
118
,
124
,
130
,
139
Commutative laws,
105
Compass,
63
.
See also
Straight-edge and compass
Computers,
150
Congruence,
26
,
39
,
67
,
73
,
74
,
75
,
107
,
130
Consistency/inconsistency,
106â107
,
131
Contradictions,
17
,
83
,
87
,
89
,
100
,
120
,
121
,
131
.
See also
Reductio ad absurdum
Contrapositives,
83
,
84(n)
,
86
,
86(fig.)
Converse relationship,
69
,
81(n)
,
82
,
83
Coordinate Method, The
(Gelfand, Glagoleva, and Kirillov),
99â100
Coordinate systems,
97
,
97(fig.)
,
115
Critique of Pure Reason, The
(Kant),
117
negative,
133
and straight lines,
39
Das Kontinuum
(Weyl),
44
De Architectura
(Vitruvius Pollio),
1â2
Dedekind, Richard,
102
.
See also
Cantor-Dedekind axiom
Definitions,
20
,
33â44
,
51
,
90
,
159â161
eighth and ninth,
51â53
fifteenth, sixteenth, and seventeenth,
62
fifth,
35
first seven and twenty-third,
33â34
fourth,
38
of hyperbolic lines/distance,
134â135
,
136
,
139
ninth through twenty-second,
34
and real ordered fields,
113
of rectilinear figures,
60
seventh,
38
of shape,
49
tenth,
73
third,
43
twentieth,
60
Degrees of freedom,
37
De Morgan, August,
84(n)
Dieudonné, Jean,
115
Dimensions,
35
,
36
,
37
,
40
,
70
,
125
,
141
,
144
Distance,
23
,
37
,
39
,
41
,
56
,
69â70
,
87
,
88
,
125
,
132
,
144
hyperbolic distance,
135â137
,
139
Distributive laws,
105
Division,
93
,
95
,
103
,
104
,
110
,
112
Egyptians,
11
Einstein, Albert,
118
Elementary Geometry from an Advanced Standpoint
(Moise),
94
Elements
(Euclid),
9
,
44
,
80
,
90
,
91
,
123
,
153
Book II,
6
Books V through IX,
7
books in,
6â7
first four books,
7
as having limited symbolic reach,
71
as illustrated,
59
,
64â65
,
79â80
,
87
,
90
and mountain-climbing pastoral,
57â58
Eliot, George,
45
Empson, William,
57â58
Encyclopedia Britannica
,
28
Equality,
21
,
22â25
,
26
,
36
,
62
,
63
,
148
definition of,
25
“less than or equal to,”
105
of right angles,
50â51
of squares,
75
transitivity of,
24
See also
Angles: as equal
Equator,
125
Ethics,
123
Euclid,
21â22
,
43
,
89
,
140
,
145
,
152â153
birth/death of,
5
double insight of,
12
Euclidean ideal,
150
Euclidean style,
148â149
Euclidean tradition,
155â156
and fifth axiom (parallel postulate),
54â55
,
118â119
,
139â140
as a mathematician,
6
modern versions of,
8
predecessors of,
6
translations of,
8
and unity beneath diversity of experience,
11
Euclides ab omni naevo vindicatus
(Saccheri),
121
Explicit (word),
149
Fields,
103â106
,
112
,
113
,
118
,
142
Flaubert, Gustave,
1
Four-color theorem,
151
Fractions.
See under
Numbers
Friedman, Harvey,
46
Galois, Ãvariste,
142
Gauss, Carl Friedrich,
41
,
48
,
92
,
93
,
118
,
122
,
126
,
127
Gelfand, I. M.,
99
analytic geometry,
96â97
,
98â100
,
108
,
109
,
110
,
115
classification of geometries,
140â142
concrete vs. abstract models of,
13â14
,
28â29
differential geometry,
41
elliptical geometry,
141
Euclidean geometry as first theory,
108
,
152
new axiom system for,
107
non-Euclidean geometries,
8
,
106
,
118
,
121
,
123
,
124â141
projective geometry,
141
revising Euclidean geometry,
51â52
solid geometry,
7
spherical geometry,
125
unity of geometry and arithmetic,
69
,
71
,
91
,
92
,
95
,
110
,
111
,
153â154
Geometry, Euclid and Beyond
(Hartshorne),
47
Glagoleva, E. G.,
99
Gödel, Kurt,
150
Greeks (ancient),
8
,
14
,
15
,
120
,
148
Grundlagen der Geometrie
(Hilbert),
106
,
107
,
108
,
110
,
111
Guthrie, Francis,
150â151
Hadamard, Jacques,
27
Haken, Wolfgang,
151
Haldane, J. B. S.,
124
Hardy, G. H.,
77
Hartshorne, Robin,
47
Haytham, Ibn al,
120
Hilbert, David,
13
,
27
,
34
,
52
,
80
,
106â115
Homeric epics,
148