The King of Infinite Space (17 page)

Read The King of Infinite Space Online

Authors: David Berlinski

BOOK: The King of Infinite Space
7.5Mb size Format: txt, pdf, ePub

Associative laws,
105

Associative operation,
142

Assumptions,
11
,
12
,
27
,
45
,
46
,
55
,
83
,
119

of existence of points/lines/planes,
49
,
107

hidden,
30–31

that the parallel postulate is false,
120
,
121

Atiyah, Michael,
91

Atoms,
41–42
,
43
,
44

Axiomatic systems,
11
,
12
,
14
,
149

and arguments,
17

new,
107

as way of life,
9
,
106
,
148
,
152
,
156

Axioms,
45–56
,
80
,
90
,
152

Archimedean axiom,
108–109

Cantor-Dedekind axiom,
100

completeness axiom,
108
,
109

of connection, order, congruence and continuity,
107

consistency/inconsistency of,
106–107
,
131

for fields,
104–105
,
112

fifth axiom,
53–56
,
118
(
see also
Axioms: Playfair's axiom
;
Parallel postulate
)

first axiom,
113–114

first three axioms,
46
,
48–49
,
51
,
61
,
66
,
86

fourth axiom,
50–51
,
73

fourth proposition as axiom,
27

Hilbert's axioms,
109
,
111

interpreted in arithmetic,
113–114

made theorems,
46

of neutral geometry,
131

Playfair's axiom,
54
,
55
,
91
,
137
,
138

relationship between axioms and theorems,
12
,
14
,
19
,
149

as self-evident,
46

See also
Axiomatic systems

Babylonians,
8
,
69

Bacon, Francis,
77

Beltrami, Eugenio,
121
,
132–133

Bolyai, János,
118
,
122–123
,
126
,
127–128

Bolyai, Farkas,
127–128

Boole, George,
23

Boundaries,
160

Breadth,
33
,
35
,
36
,
159

Bridge of Asses,
64
,
65(fig.)
.
See also
Propositions: fifth proposition

Calculus,
39
,
94

differential calculus,
41
,
59

of segments,
110

Cantor, Georg,
93

Cantor-Dedekind axiom,
100
,
101
,
109

Cardioids,
99
,
99(fig.)

Cathedrals,
64

Causality,
13

Cézanne, Paul,
152

Change,
43
,
44
,
52

Chesterton, G. K.,
11

China,
9

Cicero,
1

Circles,
7
,
13
,
25
,
46
,
79

center/circumference of,
98
,
130
,
135
,
136
,
160

diameter of,
160

and geodesics,
125

and proposition one,
61–62

radii of,
49
,
62
,
98
,
130

semicircles,
160

See also
Poincaré, Henri: Poincaré disk

Clark, Kenneth,
78
,
152

Clay tablets,
8

Coincidence,
21
,
23
,
25–26
,
27
,
39
,
41
,
67

and concrete vs. abstract models of geometry,
28–29

Common beliefs/notions,
19–32
,
90

fifth,
29–30

first,
24

fourth,
23

second/third,
24
,
62
,
74

Common sense,
36
,
64
,
91
,
118
,
124
,
130
,
139

Commutative laws,
105

Compass,
63
.
See also
Straight-edge and compass

Complexity,
55
,
107

Computers,
150

Congruence,
26
,
39
,
67
,
73
,
74
,
75
,
107
,
130

Consistency/inconsistency,
106–107
,
131

Contradictions,
17
,
83
,
87
,
89
,
100
,
120
,
121
,
131
.
See also
Reductio ad absurdum

Contrapositives,
83
,
84(n)
,
86
,
86(fig.)

Converse relationship,
69
,
81(n)
,
82
,
83

Coordinate Method, The
(Gelfand, Glagoleva, and Kirillov),
99–100

Coordinate systems,
97
,
97(fig.)
,
115

Critique of Pure Reason, The
(Kant),
117

Cultures,
3
,
4
,
9

Curvature,
38
,
99
,
125
,
139

extrinsic,
40
,
41

negative,
133

and straight lines,
39

Das Kontinuum
(Weyl),
44

Davies, Brian,
150
,
151

De Architectura
(Vitruvius Pollio),
1–2

Dedekind, Richard,
102
.
See also
Cantor-Dedekind axiom

Deduction,
45
,
149

Definitions,
20
,
33–44
,
51
,
90
,
159–161

eighth and ninth,
51–53

fifteenth, sixteenth, and seventeenth,
62

fifth,
35

first seven and twenty-third,
33–34

fourth,
38

of hyperbolic lines/distance,
134–135
,
136
,
139

nineteenth,
60
,
84
,
85–86

ninth through twenty-second,
34

and real ordered fields,
113

of rectilinear figures,
60

seventh,
38

of shape,
49

tenth,
73

third,
43

twentieth,
60

twenty-third,
37–38
,
43
,
84

Degrees of freedom,
37

Democritus,
41
,
42
,
44

De Morgan, August,
84(n)

Descartes, René,
45
,
96

Dieudonné, Jean,
115

Dimensions,
35
,
36
,
37
,
40
,
70
,
125
,
141
,
144

Distance,
23
,
37
,
39
,
41
,
56
,
69–70
,
87
,
88
,
125
,
132
,
144

hyperbolic distance,
135–137
,
139

Distributive laws,
105

Division,
93
,
95
,
103
,
104
,
110
,
112

Egyptians,
11

Einstein, Albert,
118

Elementary Geometry from an Advanced Standpoint
(Moise),
94

Elements
(Euclid),
9
,
44
,
80
,
90
,
91
,
123
,
153

Book I,
6
,
119

Book II,
6

Book V,
7
,
93–94
,
110

Books V through IX,
7

Book VII,
93
,
110

Book X,
93–94
,
100
,
110

books in,
6–7

first four books,
7

as having limited symbolic reach,
71

as illustrated,
59
,
64–65
,
79–80
,
87
,
90

and mountain-climbing pastoral,
57–58

as textbook,
5–6
,
7
,
155–156

Eliot, George,
45

Ellipses,
13
,
98–99

Empson, William,
57–58

Encyclopedia Britannica
,
28

Equality,
21
,
22–25
,
26
,
36
,
62
,
63
,
148

definition of,
25

“less than or equal to,”
105

of right angles,
50–51

of squares,
75

transitivity of,
24

See also
Angles: as equal

Equator,
125

Erlangen program,
140
,
142

Ethics,
123

Euclid,
21–22
,
43
,
89
,
140
,
145
,
152–153

and Aristotle,
15
,
17

birth/death of,
5

double insight of,
12

Euclidean ideal,
150

Euclidean style,
148–149

Euclidean tradition,
155–156

and fifth axiom (parallel postulate),
54–55
,
118–119
,
139–140

as a mathematician,
6

modern versions of,
8

predecessors of,
6

as a teacher,
5–6
,
26–27
,
79

translations of,
8

and unity beneath diversity of experience,
11

Euclides ab omni naevo vindicatus
(Saccheri),
121

Eudoxus,
6
,
94
,
108

Explicit (word),
149

Fields,
103–106
,
112
,
113
,
118
,
142

Flatness,
38–39
,
40–41

Flaubert, Gustave,
1

Forms (Platonic),
13
,
60
,
145

Four-color theorem,
151

Fractions.
See under
Numbers

Friedman, Harvey,
46

Galois, Évariste,
142

Gauss, Carl Friedrich,
41
,
48
,
92
,
93
,
118
,
122
,
126
,
127

Gelfand, I. M.,
99

Geodesics,
125
,
126
,
137

Geometry,
5
,
6
,
12
,
80
,
83
,
112

analytic geometry,
96–97
,
98–100
,
108
,
109
,
110
,
115

classification of geometries,
140–142

concrete vs. abstract models of,
13–14
,
28–29

differential geometry,
41

elliptical geometry,
141

Euclidean geometry as first theory,
108
,
152

hyperbolic geometry,
139
,
141

neutral geometry,
122
,
131

new axiom system for,
107

non-Euclidean geometries,
8
,
106
,
118
,
121
,
123
,
124–141

projective geometry,
141

revising Euclidean geometry,
51–52

solid geometry,
7

spherical geometry,
125

unity of geometry and arithmetic,
69
,
71
,
91
,
92
,
95
,
110
,
111
,
153–154

Geometry, Euclid and Beyond
(Hartshorne),
47

Glagoleva, E. G.,
99

Gödel, Kurt,
150

Greeks (ancient),
8
,
14
,
15
,
120
,
148

Groups,
142–145
,
151

Grundlagen der Geometrie
(Hilbert),
106
,
107
,
108
,
110
,
111

Guthrie, Francis,
150–151

Hadamard, Jacques,
27

Haken, Wolfgang,
151

Haldane, J. B. S.,
124

Hardy, G. H.,
77

Hartshorne, Robin,
47

Haytham, Ibn al,
120

Hilbert, David,
13
,
27
,
34
,
52
,
80
,
106–115

Homeric epics,
148

Other books

After Forever by Jasinda Wilder
The Alpha Bet by Hale, Stephanie
Manhattan Dreaming by Anita Heiss
The Book of Illusions by Paul Auster
The Cowboy and the Princess by Myrna MacKenzie
Cold Tea on a Hot Day by Matlock, Curtiss Ann