Read The King of Infinite Space Online
Authors: David Berlinski
Horace,
39
Hyperbola,
99
Hyperbolic plane.
See under
Planes
Hypotenuse,
69
,
100
.
See also
Pythagorean theorem
Identity,
25
,
50â51
,
68
,
142
,
144
of a point and pair of numbers,
112
(
see also
Points: point as pair of numbers
)
between shapes and numbers,
153
Inference,
15
,
17
,
19
,
43
,
44
,
49
,
123
rules of inference,
90
Infinite regress,
32
natural numbers as potentially infinite,
92â93
Inverse relationship,
81(n)
,
82
,
83
,
105
,
142
,
143
,
144
Isometry,
144
James, Henry,
117
Joyce, D. E.,
62
Judt, Tony,
4
Jupiter and Antiope
(painting),
77â78
,
79
,
82
,
87
Kant, Immanuel,
117
Kazan, University of,
128â129
Kirillov, A. A.,
99
Klein, Felix,
140
Kline, Morris,
34
La Géométrie
(Descartes),
96
Latitude/longitude,
3
Leçons de géométrie élémentaire
(Hadamard),
27
Libri Decem
(Vitruvius Pollio),
1
curved lines,
137
(
see also
Curvature
)
existence of,
107
parallel lines,
34
,
84
,
84(n)
,
88
,
89â90
,
125
,
130
,
138
,
161
straight lines,
7
,
13
,
14
,
22
,
23
,
25
,
33
,
34
,
37
,
38
,
39
,
43
,
46
,
48
,
50
,
52
,
53
,
60
,
61
,
62
,
63
,
66
,
73
,
80â81
,
95
,
98
,
112
,
113
,
135
,
137
,
143
,
159
,
160
,
161
straight lines as ratio of three numbers,
112
,
113
Lobachevsky, Nicolai,
118
,
122â123
,
126
,
128â131
,
133
,
139
Logic,
2
,
12
,
23
,
34
,
53
,
54
,
59
,
65
,
80
,
82
,
83
,
90
,
107
,
108
,
119
of relationships,
24
See also
Syllogisms
Mallory, George,
58â59
Mathematical Thought from Ancient to Modern Times
(Kline),
34
Mathematics,
2â3
,
7
,
12
,
41
,
83
,
151
as doubtful,
123
mathematical physics,
144
and mountain-climbing pastoral,
57
Measurements/mensuration,
11
Middle Ages,
80
Mirror images,
68
Moise, Edwin,
94
Monet, Claude,
152
Mordell, Louis Joel,
57
Morley, Frank,
147
as impossible,
43
power of geometrical objects to move or be moved,
36
,
37
,
39
,
52
,
68
,
95
,
145
rigid body moves,
144
ways of moving in a plane,
37
Mountain-climbing pastoral,
57â58
Mount Everest,
58
Multiplication,
103
,
104
,
110
,
112
Newton, Isaac,
47
Non-Euclidean geometries.
See under
Geometry
Notices of the American Mathematical Society
,
150
Numbers,
3
,
7
,
12
,
17
,
29
,
30
,
69
,
145
,
153
and distances,
23
geometrical properties of numerals,
92
greatest/least numbers,
109
identifying points in space,
36
irrational numbers,
102
natural numbers,
91â92
,
92â93
,
95
,
101
natural numbers as potentially infinite,
92â93
negative numbers,
101â102
,
103
,
142
new numbers,
101â102
number as multitude composed of units,
93
and points,
109
(
see also
Points: point as pair of numbers
)
prime numbers,
100
real numbers,
94
,
103
,
105â106
,
109
,
110
,
111
,
112
Roman numerals,
4
sets of numbers,
111â112
squaring/square roots of,
70
,
72
,
100
,
101
,
102
,
103
,
110
,
135â136
Oblongs,
161
Omar Khayyám,
120â121
On Nature
(Parmenides),
42
Pappus,
68
Papyrus,
8
Parabola,
98
Paradoxes,
38
Parallelism,
53
,
56
,
74
,
74(n)
,
81
,
87
.
See also
Lines: parallel lines
;
Parallel postulate
Parallel postulate,
81(n)
,
117â124
denial/failure of,
118
,
120
,
123
,
131
,
137
,
139â140
and Pythagorean theorem,
119
See also
Axioms: fifth axiom
whole as greater than the part,
21
,
29â30
Pasch, Moritz,
34
Peirce, C. S.,
23
Perspective (in paintings),
141â142
Peyrard, François,
8
Planes,
14
,
33
,
38
,
39
,
40
,
41
,
94
,
96â97
,
108
,
111
,
112
,
138
,
143
,
144
,
152
degrees of freedom of,
37
existence of,
107
hyperbolic plane,
129â130
,
130(fig.)
,
134
,
135
,
137
projective plane,
141â142
Playfair, Francis,
53â54
.
See also
Axioms: Playfair's axiom
Poincaré, Henri,
134
dictionary of,
138â139
Poincaré disk,
134â138
,
135(fig.)
“between two points,”
14
,
41
,
43
,
44
,
46
,
48
,
50
,
61
,
62
,
70
,
95
,
124â125
,
126
,
135
,
137
and continuity,
44
hyperbolic points,
134
point as pair of numbers,
97â98
,
100
,
112
,
113â114
,
114â115
Polygons,
48
Praxinoscopes,
78
Principia
(Newton),
47
Proclus,
119
Proofs,
12
,
17
,
19
,
20
,
26
,
31
,
47
,
58
,
59
,
87
,
150
as artifacts,
32
of four-color theorem,
151
by Lobachevsky,
133
of parallel postulate,
119
,
120â122
,
124
proof by contradiction,
83
(
see also
Reductio ad absurdum
)
of Pythagorean theorem,
71â75
,
96
steps in,
59
of twenty-seventh proposition,
83â87
,
90
as way of life,
148
,
156
(
see also
Axiomatic systems: as way of life
)
difficulty of,
89
first proposition,
60â63
,
61(fig.)
first twenty-eight propositions,
122
forty-seventh proposition,
68â75
forty-sixth proposition,
73
fourth proposition,
26â27
,
36
,
39
,
67
,
68
,
74
sixteenth proposition,
83â84
,
84(fig.)
,
84(n)
,
85(fig.)
,
86
third proposition,
66
thirty-second proposition,
119
twenty-ninth proposition,
118
,
155
twenty-seventh proposition,
80â90
,
81(fig.)
,
84(n)
,
86(fig.)
Pseudosphere,
132â133
,
132(fig.)
Ptolemy I,
5
Pythagorean theorem,
68â75
,
72(fig.)
,
100
algebraic equation of,
96
and parallel postulate,
119
Reductio ad absurdum
,
77
,
83â87
Reflection (in planes),
37
,
68
,
143
,
144
Relativity and Geometry
(Torretti),
39
Relativity theory,
118
Renaissance,
8
,
141
.
See also
Arab renaissance