Read El hombre anumérico Online

Authors: John Allen Paulos

Tags: #Ensayo, Ciencia

El hombre anumérico (7 page)

BOOK: El hombre anumérico
8.62Mb size Format: txt, pdf, ePub
ads

En determinados contextos, la improbabilidad es algo que no sorprende. Cada mano de bridge es muy improbable. También lo son las manos de póker y los billetes de lotería. En el caso de la pareja californiana, la improbabilidad es más significativa. Sin embargo, el razonamiento correcto es el de su abogado defensor.

Y a propósito, si las 3.838.380 maneras de escoger seis números de entre cuarenta son todas igualmente probables ¿cómo es que la mayoría de la gente prefiere un billete de lotería con la combinación 213172 o 293684 a otro con la combinación 123456? Esta es, me parece, una pregunta bastante interesante.

La siguiente anomalía deportiva tiene también implicaciones legales. Consideremos dos jugadores de béisbol, Babe Ruth y Lou Gehrig, pongamos por caso. Durante la primera mitad de la temporada, Babe Ruth tiene en el bateo una media de aciertos mayor que Lou Gehrig. Y en la segunda mitad de la temporada vuelve a ocurrir lo mismo. Pero considerando la temporada entera, ocurre que el promedio de aciertos de Lou Gehrig es mejor que el de Babe Ruth. ¿Puede ser cierto? A primera vista parece como si tal situación fuera totalmente imposible, aunque el mero hecho de haber planteado la pregunta pueda de por sí despertar algunas dudas.

Lo que podría haber ocurrido es que durante la primera mitad de la temporada Babe Ruth tuviera una media de aciertos de 0,300 y Lou Gehrig de sólo 0,290, pero que Ruth hubiera bateado doscientas veces y Gehrig sólo cien. Mientras que en la segunda mitad de la temporada las medias de aciertos fueran 0,400 para Ruth y sólo 0,390 para Gehrig, pero que Ruth hubiera salido a batear sólo cien veces y Gehrig, doscientas. El resultado global para toda la temporada sería un promedio de aciertos de 0,357 de Gehrig frente a 0,333 de Ruth. La moraleja es que no se pueden sacar promedios de promedios.

Hace ya unos años hubo un caso interesantísimo de discriminación en California que presentaba la misma estructura formal que este problema de los promedios de bateo. En vista de la proporción de mujeres en el tercer ciclo de una gran universidad, algunas plantearon un litigio reclamando que habían recibido un trato discriminatorio por parte de la universidad. Cuando los administradores intentaron determinar qué departamentos eran los más culpables, encontraron que en todos ellos el porcentaje de admitidas entre las aspirantes femeninas era mayor que el de admitidos entre los aspirantes masculinos. Sin embargo, las mujeres se presentaban en cantidades desproporcionadamente grandes a departamentos como literatura y psicología, que sólo admitían un reducido porcentaje de los candidatos, mientras que los hombres se presentaban en gran número a departamentos como matemáticas e ingeniería, que admitían un porcentaje de candidatos mucho mayor. El patrón de admisión de los hombres era semejante al patrón de bateo de Gehrig que salió a batear más a menudo en la segunda mitad de la temporada, en la que acertar resultó más fácil.

Otro problema en el que la intuición nos engaña, y en el que también intervienen probabilidades aparentemente desproporcionadas, es el de un hombre de Nueva York que tiene una novia en el Bronx y otra en Brooklyn. Siente el mismo cariño por ambas y por tanto le da lo mismo tomar el metro hacia el Bronx que en sentido contrario, hacia Brooklyn. Como durante todo el día pasan trenes en ambas direcciones, espera que el metro decida a cuál de las dos visitará, y toma siempre el primer tren que pasa. Pero al cabo de un tiempo, la novia de Brooklyn, que está enamorada de él, empieza a quejarse de que sólo ha acudido a una cuarta parte de las citas, mientras que la novia del Bronx, que se ha empezado a hartar de él, empieza a quejarse de que se ha presentado en tres cuartas partes de sus citas. Aparte de ser novato, ¿cuál es el problema de este hombre?

La respuesta es sencilla y viene a continuación, de modo que si quieres pensar un poco no sigas leyendo. El hecho de que los viajes al Bronx sean más frecuentes se debe a la forma particular del horario de trenes. Aunque pasen trenes cada veinte minutos en ambas direcciones, el horario podría ser más o menos como sigue: tren al Bronx, 7:00; tren a Brooklyn, 7:05; tren al Bronx, 7:20; tren a Brooklyn, 7:25; etc.

El intervalo entre cada tren de Brooklyn y el siguiente tren del Bronx es de quince minutos, tres veces más largo que el intervalo de cinco minutos entre cada tren del Bronx y el siguiente a Brooklyn. Esto explica por qué se presenta a tres cuartas partes de las citas del Bronx y sólo a una cuarta parte de las de Brooklyn.

Hay un sinfín de otras rarezas semejantes que se derivan de nuestros modos convencionales de medir, expresar y comparar cantidades periódicas, tanto si se trata del
cash flow
de un gobierno como de las fluctuaciones diarias de la temperatura corporal.

Monedas no trucadas y ganadores o perdedores en el juego de la vida

Imaginemos que tiramos una moneda al aire varias veces seguidas y obtenemos una sucesión de caras (C) y cruces (c), por ejemplo:

CCcCccCCcCcccCccCCCcCccCCcCCccC

cCCccCCcCcCCCCcCCCcc

Si la moneda no está trucada, en esas sucesiones ocurre una serie de cosas verdaderamente raras. Por ejemplo, si se está al tanto de la proporción de las veces en que el número de caras es mayor que el de cruces, se observa con sorpresa que raras veces es cercana a la mitad.

Imaginemos a dos jugadores, Pedro y Pablo, que juegan a cara o cruz, tirando una moneda al aire una vez por día. En un momento dado, diremos que Pedro va ganando si hasta aquel momento han salido más caras que cruces, y en caso contrario es Pablo quien va ganando. En cualquier momento, tanto Pedro como Pablo tienen la misma probabilidad de ir ganando, pero sea quien sea el que vaya ganando, éste es el que tiene mayor probabilidad de haber estado ganando más rato. Si han tirado la moneda cien veces y acaba ganando Pedro ¡es considerablemente mayor la probabilidad de que éste haya estado por delante más del 90% del tiempo, pongamos, que la de que lo haya estado entre el 45 y el 55%! Y análogamente, si acaba ganando Pablo, la probabilidad de que éste haya estado ganando más del 96% del tiempo es mucho menor que la de que lo haya estado entre el 48 y el 52%.

Quizás este resultado sea tan contrario a la intuición porque la mayoría de la gente suele pensar como si las desviaciones de la media estuvieran atadas a una banda elástica, de modo que, cuanto mayor fuera la desviación, mayor sería la fuerza recuperadora que tendiese a restaurar la media. La creencia errónea de que el hecho de que hayan salido varias caras seguidas hace más probable que la próxima vez salga cruz se conoce como «sofisma del jugador» (las mismas ideas valen para la ruleta y los dados).

La moneda no sabe nada, no obstante, de medias ni de bandas elásticas, y si ha salido cara 519 veces y cruz 481, es tan probable que la diferencia entre caras y cruces aumente como que disminuya. Y esto es cierto a pesar de que la proporción de caras tienda a 1/2 a medida que aumenta el número de tiradas. (No hay que confundir el sofisma del jugador con otro fenómeno, la regresión a la media, que sí se cumple. Si tiramos la moneda otras mil veces es más probable que el número de caras de la segunda tanda de mil tiradas sea menor de 519 que lo contrario.)

En términos relativos, las monedas se comportan bien: el cociente entre el número de caras y el de cruces de una sucesión de tiradas tiende a 1 a medida que aumenta el número de éstas. En cambio, se comportan mal en términos de cantidades absolutas: la diferencia entre el número de caras y el de cruces tiende a aumentar cuantas más veces tiramos la moneda al aire, y los cambios en el liderato, de caras a cruces o viceversa, tienden a hacerse cada vez más raros.

Si hasta las monedas no trucadas se portan tan mal en términos absolutos, no es, ni por asomo, sorprendente que algunas personas acaben ganándose fama de «perdedores» mientras que otras se la ganen de «ganadores», a pesar de que entre ellos no haya más diferencia real que la buena o mala suerte. Desgraciadamente quizá la gente es más sensible a las diferencias absolutas entre personas que a las igualdades aproximadas. Si Pedro y Pablo han ganado 519 y 481 veces, respectivamente, es muy probable que se etiquete a Pedro de ganador y a Pablo de perdedor. En mi opinión, los ganadores (y los perdedores) sólo son, a menudo, personas que se han quedado atascados en el lado bueno (o malo) del tanteador. En el caso de las monedas puede pasar mucho tiempo antes de que la suerte cambie, y a menudo mucho más que una vida medianamente larga.

La cantidad sorprendente de veces que salen series de caras o cruces consecutivas de distintas longitudes es la causa de más ideas contrarias a la intuición. Si todos los días Pedro y Pablo apuestan la comida tirando al aire una moneda no trucada, y consideramos un intervalo de tiempo de unas nueve semanas, es más probable que tanto Pedro como Pablo hayan ganado una serie de cinco comidas seguidas que lo contrario. Y si consideramos un período de entre cinco y seis años, es probable que tanto uno como otro hayan ganado diez comidas seguidas.

La mayoría de la gente no se da cuenta de que los sucesos aleatorios pueden presentar una apariencia completamente ordenada. He aquí una sucesión aleatoria de Xs y Os, obtenida mediante ordenador, en la que cada letra tiene probabilidad 1/2.

OOXOOXXOXOXXXOOOXOOXXOOXOOXXOX

XXOXOOXXXXOXXXOOOXOOOOXOOXXOOX

OXXOOXOXXOXXXXXOOXOXOXXOOXOXXO

XXXXXOOXOXXOXOOXXOOXXOOOOXOOOX

XOOOXOOXOXOOXOOOXXXOXXXXOXOXXX

XOOOOOXOOOXOXOXOOOXOOOXXOOXOOX

OOXOXOXOOXOOXOXOOOXXXXXOOOXOXX

OXOXXOXXOOOOOXOXOOXOXXOXOXXXXO

OOOXOXXXOOOOXXXOXXXOOXOXOOOXOO

XOXOOOXOXXOXXOOOXXOOXOXXXXXOX

Obsérvese la cantidad de series y el modo en que aparentemente se forman grupos y pautas. Si nos viéramos obligados a explicarlos habríamos de recurrir a razonamientos que serían necesariamente falsos. De hecho se han realizado estudios en los que se han dado a analizar fenómenos aleatorios como el anterior a expertos en el campo correspondiente, y éstos han logrado encontrar «explicaciones» convincentes de las pautas.

Teniendo esto presente, piénsese en algunas de las declaraciones de los analistas de la bolsa. Es cierto que las alzas y las caídas de un cierto valor, o de la bolsa en general, no son absolutamente aleatorias, pero no es descabellado pensar que el azar juega un papel muy importante en ellas. Sin embargo, uno nunca llegaría a pensar esto a partir de los pulcros análisis a posteriori, que siguen al cierre de cada sesión. Los comentaristas tienen siempre un reparto habitual de personajes a los que recurrir para explicar cualquier recuperación o cualquier descenso. Siempre tienen a mano la realización de las plusvalías, el déficit federal, o cualquier otra cosa para explicar los giros a la baja, y el aumento de los beneficios de las sociedades, el aumento de los tipos de interés o lo que sea para explicar los giros alcistas. Un comentarista casi nunca dice que la actividad de la bolsa de ese día o de tal semana ha obedecido, por lo general, a fluctuaciones aleatorias.

La racha de suerte y el manitas

Los grupos, series y pautas que presentan las sucesiones aleatorias son hasta cierto punto predecibles.

Las sucesiones de caras y cruces de una longitud dada, pongamos veinte tiradas, tienen generalmente cierto número de series de caras consecutivas. Diremos que una sucesión de veinte tiradas de una moneda que diera diez caras seguidas y diez cruces (CCCCCCCCCCcccccccccc) tiene sólo una serie de caras, mientras que una sucesión de veinte tiradas que diera alternativamente cara y cruz (CcCcCcCcCcCcCcCcCcCc) tiene diez series de caras. Es muy improbable que esas dos sucesiones hayan sido generadas al azar. Es más probable, sin embargo, que en una sucesión aleatoria de veinte tiradas se obtengan seis series de caras (por ejemplo, CCcCCcCccCCCccCCccCc).

Criterios parecidos nos pueden servir para determinar si cierta sucesión de caras y cruces, o de aciertos y fallos, es debida al azar. De hecho, los psicólogos Amos Tversky y Daniel Kahneman han analizado las sucesiones de aciertos y fallos de jugadores profesionales de baloncesto que tenían un porcentaje de realización del 50% y resultó que parecían ser completamente aleatorias; parece que en baloncesto no hay rachas de suerte. Las rachas que había eran, con toda probabilidad, debidas al azar. Si un jugador intenta veinte tiros por partido, por ejemplo, tiene una probabilidad de casi el 50% de meter por lo menos cuatro cestas seguidas en algún momento del partido. Tiene una probabilidad de entre el 20 y el 25% de conseguir una serie de cinco o más canastas seguidas, mientras que la probabilidad de que la serie sea de seis o más canastas es aproximadamente del 10%.

Se puede pulir más el razonamiento para tratar el caso de que la media de aciertos del jugador sea distinta del 50%, y parece que valen resultados parecidos. Un jugador que marca el 65% de sus tiros, pongamos, marca tantos del mismo modo que «marca» caras en una moneda trucada que cae cara en el 65% de las veces que la tiramos; es decir, cada tiro es independiente del anterior.

Siempre he tenido la sospecha de que cosas como «rachas de suerte» o «manitas» o un «equipo que siempre remonta» no eran más que exageraciones de los periodistas deportivos, sin otra intención que tener algo de que hablar. Seguramente tales expresiones signifiquen algo, pero demasiado a menudo sólo son fruto de un intento mental por descubrir un significado donde no hay más que probabilidad.

En béisbol, una racha muy larga de aciertos constituye una especie de récord especialmente extraordinario, tan improbable que parece prácticamente inasequible y casi inmune a la predicción probabilística. Hace unos cuantos años, Pete Rose estableció un récord en la
National League
con tiros certeros en cuarenta y cuatro partidos seguidos. Si para simplificar suponemos que bateó al 0,300 (esto es, que acertó el 30% de las veces y falló el 70% restante), y que salió a batear cuatro veces por partido, su probabilidad de no acertar ninguna vez en un partido dado, suponiendo la independencia, era de (0,7)
4
= 0,24. (Recordemos que independencia significa que acierta del mismo modo en que sale cara cuando tiramos una moneda trucada que da caras el 30% de las veces.) Así pues, la probabilidad de que acertara por lo menos una vez en cualquier partido era de 1 - 0,24 = 0,76. Y por tanto, la probabilidad de que acertara por lo menos una vez en todos los partidos de una serie de cuarenta y cuatro era de (0,76)
44
= 0,0000057. Muy pequeña, efectivamente.

BOOK: El hombre anumérico
8.62Mb size Format: txt, pdf, ePub
ads

Other books

Dating For Decades by Tracy Krimmer
Magic Without Mercy by Devon Monk
Deadly Image by Tamelia Tumlin
Fish Out of Water by Natalie Whipple
Demon Bound by Demon Bound
An Unlikely Father by Lynn Collum
No-Bake Gingerbread Houses for Kids by Lisa Anderson, Photographs by Zac Williams
037 Last Dance by Carolyn Keene