La probabilidad de que hubiera acertado en una serie consecutiva de exactamente cuarenta y cuatro partidos de entre los 162 que componen la temporada es mayor: 0,000041, que se calcula sumando todas las posibles maneras en que podría haber conseguido tal serie de exactamente cuarenta y cuatro partidos, sin tener en cuenta el caso en que hubiera conseguido más de una de tales series, cuya probabilidad es despreciable. La probabilidad de que haya marcados aciertos en cuarenta y cuatro partidos o más es unas cuatro veces mayor. Si multiplicamos esta última cantidad por el número de jugadores de las
Major Leagues
(redondeando bastante a la baja para tener en cuenta que hay jugadores con promedios de bateo inferiores) y multiplicamos por el número aproximado de años en que se ha jugado al béisbol (haciendo los ajustes convenientes para reflejar que el número de jugadores varía de una temporada a otra), vemos que en realidad no es tan improbable que en algún momento un jugador de las
Major Leagues
haya acertado siempre en cuarenta y cuatro partidos seguidos o más.
Una última observación: he considerado la serie de cuarenta y cuatro partidos de Rose en vez de la serie aparentemente más impresionante aún de DiMaggio, de cincuenta y seis partidos, porque, dada la diferencia entre sus respectivos promedios de bateo, la serie de Rose fue una hazaña ligeramente más improbable (incluso teniendo en cuenta que las temporadas de Rose eran más largas, con 162 partidos).
Los acontecimientos raros, como las series de bateos, que son fruto del azar, no se pueden predecir individualmente. Lo que sí se puede describir en términos de probabilidad es la estructura de su aparición. Consideremos un tipo de hechos más prosaico. Durante un período de diez años, se hace un seguimiento de mil matrimonios que desean tener tres hijos. Supongamos que 800 de las parejas lo consiguen en dicho período. La probabilidad de que cualquiera de las parejas tenga tres hijas es 1/2 × 1/2 × 1/2 = 1/8; por tanto, aproximadamente cien de las 800 parejas tendrán tres hijas cada una. Por simetría, aproximadamente cien de las parejas tendrán tres chicos. Hay tres sucesiones distintas en las que cada familia puede tener dos hembras y un varón HHV, HVH o VHH, donde el orden de las letras indica el orden de nacimiento y cada una de estas sucesiones tiene una probabilidad de 1/8 o (1/2)
3
. Por tanto, la probabilidad de tener dos chicas y un chico es 3/8, con lo que aproximadamente 300 de las 800 parejas tendrán este tipo de descendencia. Y también por simetría, unas 300 parejas tendrán dos chicos y una chica.
Este último caso que acabamos de considerar no tiene nada de sorprendente, pero el mismo tipo de descripción probabilística (empleando unas matemáticas ligeramente más difíciles que la distribución binomial) se puede aplicar a los acontecimientos muy raros. El número de accidentes anuales en un cruce concreto, el número de aguaceros anuales que caen en un desierto determinado, el número de casos de leucemia en una comarca dada, el número de muertes anuales por coz de caballo en ciertos regimientos de caballería del ejército prusiano, etcétera, todos estos casos han sido descritos con gran precisión usando la distribución de probabilidad de Poisson. Primero hay que conocer aproximadamente la improbabilidad del hecho y, una vez conocida, se puede usar esta información junto con la fórmula de Poisson, para tener una idea bastante aproximada de, por ejemplo, cuántos años pasarán sin que haya muertos por coz de caballo, en qué porcentaje de los años venideros habrá una de tales muertes, en qué porcentaje habrá dos, etc. De modo análogo, se puede predecir el porcentaje de los años en los que no habrá precipitaciones de lluvia en un desierto, una precipitación, dos, etcétera.
En este sentido, podemos decir que hasta los sucesos raros son completamente predecibles.
Cuando le preguntan por qué no cree en la astrología, el lógico Raymond Smullyan contesta que es Géminis y los Géminis no creen en la astrología.
Muestra de los titulares de una cartelera de supermercado: Una camioneta de reparto milagrosa cura enfermos. Bigfoot ataca una aldea. Una niña de siete años da a luz gemelos en una juguetería. Un swami se mantiene sobre una sola pierna desde 1969.
Examinad fragmentos de pseudociencia y encontraréis un manto de protección, un pulgar que chupar, unas faldas a las que agarrarse. ¿Y qué ofrecemos nosotros a cambio? ¡Incertidumbre! ¡Inseguridad!
Isaac Asimov en
The Skeptical Inquirer
Guiarse por precedentes absurdos y cerrar los ojos es más fácil que pensar.
William Cowper
El anumerismo, Freud y la pseudociencia
El anumerismo y la pseudociencia suelen ir de la mano, debido en parte a lo fácil que es invocar la certidumbre matemática para obligar al anumérico a asentir estúpidamente ante cualquier afirmación. Es cierto que la matemática pura trata con certidumbres, pero la calidad de sus aplicaciones no es mejor que la de las suposiciones empíricas, las simplificaciones y las estimaciones que implícitamente llevan aparejadas.
Incluso verdades matemáticas tan fundamentales como «los iguales pueden ser sustituidos por iguales», o «1 y 1 son 2», pueden ser mal aplicadas: una taza de agua más una taza de palomitas de maíz no es igual a dos tazas de palomitas empapadas; ni el «niño médico Duvalier» es lo mismo que «Baby Doc». De modo análogo, puede que el presidente Reagan crea que Copenhague está en Noruega, pero aunque Copenhague sea la capital de Dinamarca, ello no implica que Reagan crea que la capital de Dinamarca está en Noruega. En contextos intencionales como el anterior, la regla de sustitución no siempre es válida.
Si se pueden malinterpretar principios básicos como éstos, no debería sorprendernos que ocurra lo mismo con matemáticas más complejas. Si el modelo o los datos que uno tiene no son buenos, tampoco lo serán las conclusiones que se desprendan de ellos. De hecho, normalmente es más difícil aplicar la vieja matemática que descubrir otra nueva. Cualquier superchería es susceptible de ser tratada por ordenador: la astrología, los biorritmos, el I Ching, pero no por ello dejan de ser supercherías. Las proyecciones estadísticas lineales, por citar un modelo del que se abusa con frecuencia, se invocan a menudo tan a la ligera, que no sería de extrañar que algún día alguien dijera que el plazo de espera proyectado para un aborto es de un año.
Este tipo de razonamiento poco riguroso no está limitado a las personas incultas. Uno de los amigos más próximos de Freud, el médico Wilhelm Fliess, inventó los análisis biorrítimicos, prácticas que se basan en la idea de que hay varios aspectos de la vida de la persona que siguen unos ciclos periódicos rígidos, que empiezan en el nacimiento. Fliess indicó a Freud que los números 23 y 28, que eran respectivamente los períodos de ciertos principios metafísicos masculino y femenino, tenían la especial propiedad de que sumando o restando múltiples de ellos formados convenientemente, se puede obtener cualquier otro número. En otras palabras: cualquier número se puede expresar en la forma 23X + 28Y siempre que X e Y se elijan convenientemente. Por ejemplo, 6 = (23 × 10) + (28 × -8). Freud quedó tan impresionado que durante años fue un ardiente defensor de la teoría de los biorritmos y creyó que moriría a los cincuenta y un años de edad, la suma de 23 y 28. Resulta, sin embargo, que no sólo el 23 y el 28 tienen la propiedad de que cualquier otro número se pueda expresar en función de ellos, sino que la comparten con todos los pares de números primos entre sí, es decir, de números que no tengan divisores comunes. O sea que hasta Freud padecía de anumerismo.
La teoría freudiana padece también de un problema más serio. Consideremos la afirmación: «Lo que Dios quiere que sea, es». Puede que esto sirva de consuelo a mucha gente, pero está claro que esta afirmación no es falsable, y por tanto, si hacemos caso al filósofo inglés Karl Popper, no es científica. «Los accidentes de aviación siempre ocurren de tres en tres.» Esto también se dice siempre y, naturalmente, si uno espera lo suficiente, cualquier cosa ocurre de tres en tres.
Popper ha criticado el freudismo por hacer predicciones y afirmaciones que, si bien son en un modo u otro sugerentes y reconfortantes, son generalmente no falsables, como las afirmaciones anteriores. Por ejemplo, supongamos que un psicoanalista ortodoxo predice cierto tipo de comportamiento neurótico. Si el paciente no reacciona según su predicción, sino de un modo completamente distinto, el analista puede atribuir este comportamiento contrario a lo pronosticado a que el paciente ha desarrollado una resistencia al análisis. Análogamente, si un marxista predice que la «clase dominante» actuará de un modo explotador y resulta que ocurre todo lo contrario, puede atribuir lo sucedido a un intento de la clase dominante de ganarse a la «clase obrera». Parece que siempre hay cláusulas de escapatoria que permiten explicar cualquier cosa.
Este no es el lugar idóneo para discutir si debemos considerar el marxismo y el freudismo como pseudociencias, pero hay una tendencia a confundir enunciados objetivos con formulaciones lógicas vacías que conduce a un modo de pensar nada sistemático. Por ejemplo, las frases «Los OVNI llevan visitantes extraterrestres» y «Los OVNI son objetos volantes no identificados», son dos afirmaciones completamente distintas. En cierta ocasión di una charla y uno de los asistentes creyó que yo suscribía la creencia en la existencia de visitantes extraterrestres, cuando lo único que había dicho era que no cabía la menor duda de que había muchos casos de OVNI. Molière satiriza una confusión parecida cuando su pomposo doctor anuncia que su poción para dormir es eficaz gracias a su poder somnífero. Como la matemática es el modo por excelencia de disfrazar de seriedad afirmaciones carentes de contenido objetivo («Los científicos descubren que en Plutón cien centímetros son un metro»), no ha de sorprendernos encontrarla como componente de cierto número de pseudociencias. Cálculos abstrusos, formas geométricas, términos algebraicos, correlaciones poco comunes cualquier cosa sirve para adornar las insensateces más absurdas.
La parapsicología
El interés por la parapsicología viene de antiguo, pero lo único que hay de cierto es que no ha habido estudios reproducibles que hayan demostrado su validez, a pesar de Uri Geller y otros charlatanes. La ESP (percepción extrasensorial), en particular, nunca se ha probado en un experimento controlado y las pocas demostraciones que han salido «bien» corresponden a estudios fatalmente carentes de rigor. En vez de refundirlos, me gustaría hacer unas cuantas observaciones generales.
La primera resulta abrumadoramente obvia y es que la ESP está en conflicto con un principio lógico fundamental según el cual los sentidos normales tienen que tener algún tipo de participación para que haya comunicación. Cuando se filtra información confidencial de una organización, la gente sospecha que hay un espía y no alguien con poderes psíquicos. Por tanto, la ciencia y el sentido común nos hacen presuponer que los fenómenos de ESP no existen, con lo que la tarea de demostrar su existencia corresponde a quienes creen en ellos.
Esto plantea consideraciones probabilísticas. Dado el modo en que se define la ESP, comunicación sin la intervención de los mecanismos sensoriales normales, no hay manera de distinguir entre un fenómeno de ESP y un acierto casual. Presentan exactamente el mismo aspecto, del mismo modo que una sola respuesta correcta a una pregunta de un test de «verdadero o falso» no nos permite distinguir si quien pasa la prueba es un estudiante excelente o alguien que contesta cada pregunta al azar. Dado que no podemos pedir que los sujetos de los experimentos de ESP justifiquen sus respuestas, como en el caso de alguien que pasa un test de «verdadero o falso», y dado que por definición no hay ningún mecanismo sensorial a cuyo funcionamiento podamos recurrir, el único camino que nos queda para demostrar la existencia de la ESP es el método estadístico: realizar un número suficiente de ensayos y ver si el número de respuestas correctas es lo bastante grande para descartar el azar como explicación. Si el azar queda descartado y no hay otras explicaciones, entonces la ESP habrá quedado demostrada.
Hay naturalmente una tremenda voluntad de creer que explica por qué hay tantos experimentos sesgados (como los de J. B. Rhine) y tantos embustes declarados (como los de S. G. Soal), que parecen ser algo característico del campo de lo paranormal. Otro factor a tener en cuenta es el que se conoce como «efecto Jeane Dixon» (por el nombre de esta mujer, que se autopresentaba como dotada de poderes psíquicos), según el cual las relativamente pocas predicciones correctas son proclamadas a los cuatro vientos, y por tanto recordadas por mucha gente, mientras que las predicciones fallidas, mucho más numerosas, son convenientemente olvidadas y borradas. Los folletines de quiosco nunca dan una lista anual de las predicciones fallidas de quienes pretenden tener poderes psíquicos, ni tampoco las dan las revistas de mayor tirada de la
New Age
que, a pesar del barniz de sofisticación, son igualmente fatuas.
La gente suele tomar la abundancia y la prominencia de los relatos sobre personas con poderes psíquicos y sobre temas parapsicológicos como una especie de evidencia de su validez. Donde hay tanto humo, razonan, a la fuerza tiene que haber fuego. La chifladura de la frenología en el siglo diecinueve continuando con una obsesión embriagadora un tanto distinta pone de manifiesto lo baladí de este modo de pensar. Entonces igual que ahora, las convicciones pseudocientíficas no eran exclusivas de la gente inculta, y se había generalizado la creencia de que, examinando las protuberancias y el contorno de la cabeza de una persona era posible determinar algunas de sus cualidades mentales y psicológicas. Muchas compañías exigían a sus futuros empleados que se sometieran a exámenes frenológicos como condición previa para acceder a un empleo, y muchas parejas que decidían casarse acudían a pedir consejos a los frenólogos. Salieron revistas especializadas en el tema y la literatura popular estaba llena de referencias a sus doctrinas. El renombrado educador Horace Mann consideraba la frenología como «guía de la filosofía y sirviente de la cristiandad»; Horace Greely, famoso por
Go West, young man
(«Joven, ve al Oeste»), era partidario de que todos los maquinistas ferroviarios pasaran tests frenológicos.
Bajando a temas más pedestres, pensemos en la ceremonia de los que andan descalzos sobre brasas de madera ardiendo. Esta práctica se ha presentado a menudo como un ejemplo del «poder de la mente sobre la materia», y no hace falta ser anumérico para quedar de entrada impresionado ante tamaña proeza.