¿Es Dios un Matemático? (2 page)

Read ¿Es Dios un Matemático? Online

Authors: Mario Livio

Tags: #Divulgación Científica

BOOK: ¿Es Dios un Matemático?
13.45Mb size Format: txt, pdf, ePub

Penrose no ofrece explicación alguna a ninguno de los tres «misterios», sino que concluye, de forma lacónica: «No cabe duda de que en realidad no hay tres mundos sino
uno solo
, cuya verdadera naturaleza actualmente somos incapaces siquiera de entrever». Es un reconocimiento mucho más humilde que la respuesta del profesor de la obra
Forty Years On
, del autor inglés Alan Bennett, a una pregunta similar:

Foster: La trinidad sigue pareciéndome confusa, señor.

Profesor: Tres en uno, uno en tres; está meridianamente claro. Si tienes alguna duda, consulta con tu profesor de matemáticas.

El enigma es aún más intrincado de lo que he sugerido hasta ahora. En realidad, el éxito de la matemática en dar explicación al mundo que nos rodea (un éxito al que Wigner denominaba «la irrazonable eficacia de la matemática») tiene dos caras, cada una más asombrosa que la otra. En primer lugar tenemos el aspecto, digamos, «activo». Cuando los físicos deambulan por el laberinto de la naturaleza, utilizan la matemática para iluminar su camino: las herramientas que emplean y desarrollan, los modelos que construyen y las explicaciones que conjuran son de naturaleza matemática. Aparentemente, esto es un milagro por sí mismo. Newton observó la caída de una manzana, la luna y las mareas en las playas (aunque de esto último no estoy muy seguro), y no ecuaciones matemáticas. Sin embargo, de algún modo fue capaz de extraer de estos fenómenos naturales una serie de leyes matemáticas de la naturaleza claras, concisas y de increíble precisión. De igual modo, James Clerk Maxwell (1831-1879) amplió el campo de la física clásica para incluir
la totalidad
de los fenómenos eléctricos y magnéticos conocidos en la década de 1860, y lo hizo con tan sólo
cuatro ecuaciones matemáticas
. Reflexionen un momento sobre ello. La explicación de una serie de resultados experimentales sobre luz y electromagnetismo, cuya descripción había ocupado volúmenes enteros, se redujo a cuatro sucintas ecuaciones. La
relatividad general
de Einstein es aún más extraordinaria: se trata de un ejemplo perfecto de teoría matemática coherente y de fantástica precisión que describe algo tan fundamental como la estructura del espacio y del tiempo.

Pero también hay un aspecto «pasivo» de la misteriosa eficacia de la matemática, tan sorprendente que, a su lado, el aspecto «activo» palidece en comparación. ¡Los conceptos y las relaciones que los matemáticos exploran únicamente por razones «puras» (
sin pensar en absoluto en su aplicación
) décadas (e incluso siglos) después acaban siendo las inesperadas soluciones de problemas firmemente enraizados en la realidad física! ¿Cómo es posible? Tomemos, por ejemplo, el divertido caso del excéntrico matemático británico Godfrey Harold Hardy (1877-1947). Hardy estaba tan orgulloso de que su trabajo consistiese exclusivamente en matemática pura que solía declarar con energía:
[6]
«Ninguno de mis descubrimientos ha supuesto, o es probable que suponga, de forma directa o indirecta, para bien o para mal, diferencia alguna en el funcionamiento del mundo». Lo han adivinado: se equivocaba. Uno de sus trabajos, redivivo
[7]
en forma de ley de Hardy-Weinberg (así llamada por Hardy y el médico alemán Wilhelm Weinberg [1862-1937]), es un principio fundamental que los genetistas utilizan en el estudio de la evolución de las poblaciones. En términos sencillos, la ley de Hardy-Weinberg afirma que, si una gran población se aparea de forma totalmente aleatoria (y no sufre los efectos de mutaciones, migraciones o selecciones), la constitución genética permanece constante de una generación a la siguiente. Incluso el aparentemente abstracto trabajo de Hardy en
teoría de números
—el estudio de las propiedades de los números naturales— ha hallado aplicaciones inesperadas. En 1973, el matemático británico Clifford Cocks
[8]
empeló la teoría de números para crear un avance decisivo en criptografía: el desarrollo de los códigos. El descubrimiento de Cocks convirtió en obsoleta otra de las afirmaciones de Hardy. En su famoso libro
A Mathematician's Apology
, editado en 1940, Hardy declaraba: «Nadie ha descubierto aún ninguna finalidad bélica para la teoría de números». Está claro que Hardy se equivocaba de nuevo. Los códigos se han convertido en algo absolutamente esencial para las comunicaciones militares. Así, incluso Hardy, uno de los más feroces críticos de la matemática aplicada, acabó desarrollando sin querer (y probablemente protestando a gritos, si hubiese estado vivo) teorías matemáticas útiles.

Pero esto no es más que la punta del iceberg. Kepler y Newton descubrieron que los planetas de nuestro sistema solar siguen órbitas en forma de elipse, las mismas curvas que, dos mil años antes, estudió el matemático griego Menechmo (fl. ca. 350 a.C). Las nuevas geometrías sugeridas por Georg Friedrich Riemann (1826-1866) en una conferencia clásica en 1854 resultaron ser exactamente las herramientas que Einstein necesitaba para explicar el tejido del cosmos. Un «lenguaje» matemático (la llamada
teoría de grupos
) que desarrolló el joven genio Evariste Galois (1811-1832) con el único objetivo de determinar la solubilidad de las ecuaciones algebraicas se ha convertido en nuestros días en el idioma que los físicos, ingenieros, lingüistas e incluso antropólogos utilizan para describir las simetrías del mundo.
[9]
Es más, en cierto modo, el concepto de patrón de simetría matemático ha revolucionado el mismo proceso de la ciencia. Durante siglos, el camino para comprender el funcionamiento del cosmos empezaba por un conjunto de hechos experimentales u observables a partir de los cuales, por ensayo y error, los científicos intentaban formular leyes generales de la naturaleza. Se trataba de empezar por observaciones locales y, a partir de ellas, armar el rompecabezas pieza a pieza. En el siglo XX, al descubrir que en la estructura del mundo subatómico subyacen esquemas matemáticos bien definidos, los físicos modernos empezaron a actuar justamente
al revés
. Empiezan por los principios matemáticos de simetría, exigen que las leyes de la naturaleza y, por supuesto, los bloques básicos que constituyen la materia sigan determinados patrones y, a partir de estos requisitos, deducen las leyes generales. ¿Cómo sabe la naturaleza que debe obedecer a estas simetrías matemáticas abstractas?

En 1975 Mitch Feigenbaum, un joven físico matemático del Laboratorio Nacional de Los Alamos, jugaba con su calculadora de bolsillo HP-65 examinando el comportamiento de una ecuación sencilla. Se dio cuenta de que una serie de números
[10]
que aparecía en los cálculos se acercaba cada vez más a un número determinado: 4,669… Al examinar otras ecuaciones, para su asombro, vio que el mismo curioso número volvía a aparecer. Feigenbaum llegó a la conclusión de que su descubrimiento representaba al
universal
, que en cierto modo marcaba la transición entre orden y caos, a pesar de que no sabía explicar por qué. Como es lógico, al principio los físicos se lo tomaron con escepticismo. Después de todo, ¿por qué iba un mismo número a caracterizar el comportamiento de sistemas que, en principio, parecían completamente distintos? Tras seis meses de evaluación profesional, el primer artículo de Feigenbaum sobre el particular fue rechazado. Sin embargo, poco después, los resultados experimentales mostraron que, al calentar helio líquido desde debajo, su comportamiento era exactamente el predicho por la solución universal de Feigenbaum. Yno se trataba del único sistema en comportarse así. El sorprendente número de Feigenbaum aparecía en la transición del flujo ordenado de un fluido al flujo turbulento, e incluso en el comportamiento del agua que gotea en un grifo.

La lista de «previsiones» similares hechas por matemáticos de las necesidades de diversas disciplinas en generaciones posteriores es inagotable. Uno de los ejemplos más insólitos de la misteriosa e inesperada interacción entre la matemática y el mundo real (físico) lo ofrece la historia de la
teoría de nudos
, el estudio matemático de los nudos. Un nudo matemático se parece a un nudo normal en una cuerda, pero con los extremos de la cuerda empalmados. Es decir, un nudo matemático es una curva cerrada sin cabos sueltos. Curiosamente, el impulso inicial de la teoría de nudos matemáticos procede de un modelo incorrecto del átomo que se desarrolló en el siglo XIX. Cuando se abandonó ese modelo —tan solo dos décadas después de su creación—, la teoría de nudos siguió evolucionando como una recóndita rama de la matemática pura. Increíblemente, esta abstracta empresa encontró de pronto numerosas aplicaciones modernas en cuestiones que van desde la estructura molecular del ADN a la
teoría de cuerdas
(el intento de unificar el mundo subatómico con la gravedad). Volveré a hablar de esta notable historia en el capítulo 8, ya que su circularidad es quizá la mejor prueba del modo en que una rama de la matemática puede surgir del intento de explicar la realidad física, y cómo esta rama deambula en el reino abstracto de la matemática para, finalmente, volver de forma inesperada a sus orígenes.

¿Descubierta o inventada?

Basta la somera descripción que he presentado hasta ahora para ofrecer pruebas concluyentes de que el universo está gobernado por la matemática o, como mínimo, es susceptible de ser analizado a través de ella. Como se mostrará en este libro, la práctica totalidad de las iniciativas humanas, si no todas, parecen emerger también de una subestructura matemática, incluso en las situaciones más inesperadas. Vamos a examinar, por ejemplo, un caso del mundo de las finanzas, la fórmula Black-Scholes (1973) para el precio de las opciones.
[11]
El modelo Black-Scholes supuso para sus creadores (Myron Scholes y Robert Carhart Merton; Fischer Black falleció antes de la concesión del premio) el premio Nobel de Economía. La ecuación principal del modelo permite comprender la asignación de precios de las opciones (las opciones son instrumentos financieros que permiten a los inversores comprar o vender acciones en un momento del futuro, a precios previamente acordados). Pero he aquí un hecho sorprendente: en el núcleo de este modelo reside un fenómeno que los físicos habían estudiado durante décadas: el movimiento browniano, el estado de agitación que muestran las partículas muy pequeñas, como el polen suspendido en el agua o las partículas de humo en el aire. Por si esto fuera poco, esa misma ecuación se aplica también a los movimientos de centenares de miles de estrellas en cúmulos estelares, e incluso a las partículas subatómicas observadas en un detector. ¿No es, como diría la protagonista de
Alicia en el país de las maravillas
, «curiorífico y curiorífico»? Después de todo, haga lo que haga el cosmos, es innegable que los negocios y las finanzas son mundos creados por la mente humana.

Vamos a fijarnos en un problema habitual de los fabricantes de circuitos electrónicos y de los diseñadores de ordenadores. Estos profesionales utilizan taladros láser para practicar decenas de miles de pequeños orificios en sus placas. Para minimizar costes, los diseñadores no quieren que su taladro se comporte como si fuese un «turista accidental»; el problema consiste en hallar el «tour» más corto entre orificios que pase una sola vez por cada uno de ellos. Pues bien, resulta que los matemáticos llevan investigando este mismo problema, denominado
problema del viajante
, desde los años veinte del pasado siglo. En esencia, si un viajante comercial o un político en campaña tiene que pasar por un número determinado de ciudades y se conoce el coste del viaje entre cada par de ciudades, el viajante debe averiguar de algún modo cuál es la forma más barata de visitar todas las ciudades y regresar al punto de partida. El problema del viajante se resolvió
[12]
para 49 ciudades de Estados Unidos en 1954. En 2004 se resolvió para 24.978 ciudades en Suecia. En otras palabras, la industria de la electrónica, las empresas de paquetería que calculan las rutas de sus camiones o incluso los fabricantes japoneses de máquinas de
pachinko
(que tienen que clavar millares de clavos en los tableros de este juego similar al
pinball
) deben apoyarse en la matemática para tareas simples como taladrar, planificar trayectos y crear el diseño físico de los ordenadores.

La matemática ha hecho acto de presencia incluso en campos que tradicionalmente no se han relacionado con las ciencias exactas. Por ejemplo, la revista
Journal of Mathematical Sociology
, que llegó en 2006 a su volumen número 30, está dedicada a la comprensión matemática de estructuras sociales complejas, organizaciones y grupos informales. Los temas de los artículos de la revista van desde modelos matemáticos para la predicción de la opinión pública hasta las interacciones dentro de grupos sociales.

En la dirección contraria —de las matemáticas a las humanidades—, el campo de la lingüística computacional, que al principio sólo incumbía a científicos relacionados con la informática, se ha convertido ahora en una tarea de investigación interdisciplinaria que reúne a lingüistas, psicólogos cognitivos, lógicos y expertos en inteligencia artificial para el estudio de la complejidad de los lenguajes evolucionados de forma natural.

Parece como si, cada uno de los esfuerzos de las personas por comprender acabase por sacar a la luz los aspectos cada vez más sutiles de la matemática sobre los que se ha creado el universo y nosotros mismos, como entes complejos. ¿Qué broma es ésta? ¿Es realmente la matemática, como les gusta decir a los educadores, el libro de texto oculto que el profesor utiliza para parecer más listo que nadie mientras ofrece a sus alumnos una versión simplificada? O, utilizando una metáfora bíblica, ¿se trata, en cierto sentido, del fruto definitivo del «árbol de la ciencia»?

Como apunté al principio de este capítulo, la eficacia de la matemática más allá de lo razonable hace surgir numerosos y fascinantes enigmas: ¿existe la matemática de forma independiente de la mente humana? Dicho de otro modo, ¿estamos simplemente
descubriendo
las verdades matemáticas, igual que los astrónomos descubren galaxias desconocidas hasta el momento? ¿O quizá la matemática es sólo una
invención humana
? Si realmente la matemática existe en algún abstracto país de nunca jamás, ¿cuál es la relación entre este mundo místico y la realidad física? ¿Cómo es capaz el cerebro humano, con sus limitaciones, de acceder a este mundo inmutable, más allá del espacio y del tiempo? Por otro lado, si la matemática no es más que una invención del hombre que no existe fuera de nuestras mentes, ¿cómo podemos explicar el hecho de que la invención de tantas verdades matemáticas se adelantó de forma milagrosa a cuestiones acerca del cosmos y de la vida humana que ni siquiera se plantearon hasta siglos más tarde? Estas preguntas no son fáciles de responder. Como se mostrará ampliamente en este libro, ni siquiera los matemáticos, científicos del conocimiento y filósofos modernos se han puesto de acuerdo en las respuestas. En 1989, el matemático francés Alain Connes, ganador de dos de los premios con más prestigio de la matemática, la medalla Fields (1982) y el premio Crafoord (2001) expresó su punto de vista con claridad:
[13]

Other books

The Sin Collector by Fortunato, Jessica
Bonded by Nicky Charles
Summer of the Spotted Owl by Melanie Jackson
Foodchain by Jeff Jacobson
Candy's Daddy by Cherry Lee