Tomemos, por ejemplo, los números primos [aquellos que sólo son divisibles por sí mismos y por la unidad] que, por lo que a mí respecta, constituyen una realidad más estable que la realidad material que nos rodea. El matemático de profesión se puede comparar con un explorador que se pone en marcha para descubrir el mundo. A partir de la experiencia se pueden descubrir hechos básicos. Por ejemplo, basta con unos sencillos cálculos para darse cuenta de que la serie de números primos parece no tener fin. El trabajo del matemático es entonces demostrar que, efectivamente, hay una infinidad de números primos. Este es un resultado antiguo, como sabemos, y se lo debemos a Euclides. Una de las consecuencias más interesantes de esta demostración es que, si alguien afirma un día que ha descubierto el mayor número primo que existe, será fácil demostrar que se equivoca. Esto mismo es válido para cualquier demostración. Nos enfrentamos pues a
una realidad estrictamente igual de incontestable que la realidad física
. (Las cursivas son mías.)
El famoso autor de libros de matemática recreativa Martin Gardner se alinea también con la idea de la matemática como
descubrimiento
. Para él, no cabe duda de que los números y la matemática tienen una existencia propia, independientemente de que los hombres sepan de ella. Según su propia e ingeniosa afirmación:
[14]
«Si dos dinosaurios se uniesen a otros dos dinosaurios en un claro, habría cuatro dinosaurios, aunque no hubiese ningún humano allí para observarlo y las bestias fuesen demasiado estúpidas para saberlo». Tal como resaltaba Connes, los partidarios de la perspectiva de «matemática como descubrimiento» (que, como veremos, se ajusta al punto de vista platónico) señalan que, una vez que se comprende determinado concepto matemático, como los números naturales 1, 2, 3, 4…, nos enfrentamos a una serie de
hechos
innegables, como 3
2
+ 4
2
= 5
2
independientemente de lo que
opinemos
al respecto. La impresión es que estamos en contacto con una realidad preexistente.
Otras personas no están de acuerdo. En la crítica de un libro
[15]
en el que Connes presentaba sus ideas, el matemático británico Michael Atiyah (ganador de la medalla Fields en 1966 y del premio Abel en 2004) señalaba:
Cualquier matemático no puede menos que simpatizar con Connes. Todos tenemos la sensación de que los números enteros, o los círculos, existen realmente en algún sentido abstracto, y el punto de vista platónico* (*El punto de vista platónico se describirá en detalle en el capítulo 2.) es terriblemente seductor. Pero ¿podemos realmente defenderlo? Si el universo fuese unidimensional, o incluso discreto, parece difícil concebir cómo podría haber evolucionado la geometría. Parece que con los números enteros el terreno en el que pisamos es más sólido, que contar es un concepto realmente primordial. Pero imaginemos que la inteligencia no se hubiese desarrollado en el hombre, sino en una especie de medusa colosal, solitaria y aislada en los abismos del océano Pacífico. Este ente no tendría experiencia alguna de los objetos individuales, ya que sólo estaría rodeado de agua. Sus datos sensoriales se reducirían a movimiento, temperatura y presión. En este continuo puro, el concepto de discreto no podría surgir ni, por consiguiente, habría nada que contar.
Atiyah, por lo tanto, cree que «el Hombre ha
creado
la matemática mediante la idealización y abstracción de elementos del mundo físico. El lingüista George Lakoff y el psicólogo Rafael Núñez piensan lo mismo. En su libro
Where Mathematics Comes From
, su conclusión es que «la matemática es una parte natural de la condición humana. Surge de nuestros cuerpos, nuestros cerebros y nuestra experiencia cotidiana del mundo». (La cursiva es mía.)
El punto de vista de Atiyah, Lakoff y Núñez suscita otra interesante pregunta. Si la matemática es por completo una invención del hombre, ¿es realmente
universal
? En otras palabras, si existen civilizaciones extraterrestres, ¿inventarían la misma matemática? Carl Sagan (1934-1996) pensaba que la respuesta a esta pregunta era afirmativa. En su libro
Cosmos
, al comentar qué tipo de señales transmitiría al espacio una civilización inteligente, decía: «Es muy improbable que cualquier proceso físico natural pueda transmitir mensajes de radio que sólo contengan números primos. Si recibiéramos un mensaje de este tipo deduciríamos que allí fuera hay una civilización que por lo menos se entusiasma con los números primos». Pero ¿cuál es la certeza de esta afirmación? En su reciente libro
A New Kind of Science
, el físico matemático Stephen Wolfram sostiene que lo que llamamos «nuestra matemática» puede representar una única posibilidad dentro de una amplia variedad de posibles «sabores» de la matemática. Por ejemplo, en lugar de utilizar reglas basadas en ecuaciones matemáticas para describir la naturaleza, podríamos utilizar tipos distintos de reglas en forma de programas de ordenador simples. Es más, algunos cosmólogos han comentado recientemente la posibilidad de que nuestro universo no sea más que uno de los miembros de un
multiverso
, un inmenso conjunto de universos. Si ese multiverso existe realmente, ¿acaso esperamos que la matemática sea la misma en los otros universos?
Los biólogos moleculares y los científicos cognitivos traen su propia perspectiva a la palestra a partir de los estudios de las facultades del cerebro. Para algunos de estos investigadores, la matemática no difiere en realidad demasiado del
lenguaje
. En otras palabras, en este escenario «cognitivo», después de eones de observar dos manos, dos ojos y dos pechos, ha surgido una definición abstracta del número 2, de un modo similar a como la palabra «ave» ha llegado a representar a numerosos animales de dos alas que vuelan. Como dice el neurocientífico francés Jean-Pierre Changeux:
[16]
«Para mí, el método axiomático [que se utiliza, por ejemplo, en geometría euclidiana] es la expresión de la conexión de las facultades cerebrales con el uso del cerebro humano, ya que aquello que caracteriza al lenguaje es precisamente su carácter generativo». Pero, si la matemática no es más que otro lenguaje, ¿cómo se explica el hecho de que numerosos niños encuentren dificultades en su estudio, a pesar de la facilidad de los niños para el estudio de idiomas? La niña prodigio escocesa Marjory Fleming (1803-1811) describió de una forma muy graciosa el tipo de dificultades que los estudiantes sufren con las matemáticas. Fleming, que no llegó a ver su noveno cumpleaños, dejó escritos diarios con más de 9.000 palabras en prosa y 500 líneas en verso. En cierto momento se queja: «Ahora les voy a hablar de los horribles y condenados apuros que me dan las tablas de multiplicar; ni se lo imaginan. Lo más infernal del mundo es siete por siete y ocho por ocho; ni la misma naturaleza es capaz de soportar eso».
[17]
Algunos de los elementos de las complejas cuestiones que he planteado se pueden reformular: ¿hay alguna diferencia fundamental entre la matemática y otras formas de expresión de la mente humana, como las artes visuales o la música? Si no es así, ¿por qué la matemática está dotada de una impresionante coherencia y regularidad que no parece existir en ninguna otra creación humana? Por ejemplo, la geometría de Euclides es igual de correcta en nuestros días (dentro de su campo de aplicación) como lo era en el año 300 a.C; representa «verdades» que son
obligatorias
. En cambio, no sentimos obligación alguna de escuchar la misma música que escuchaban los antiguos griegos, ni de estar de acuerdo con el ingenuo modelo cósmico de Aristóteles.
Muy pocas disciplinas de la actualidad emplean ideas que tienen tres mil años de antigüedad. Por otra parte, las últimas investigaciones en matemática pueden hacer referencia a teoremas publicados el año pasado, pero también utilizar la fórmula de la superficie de una esfera que Arquímedes demostró alrededor del año 250 a.C. El modelo de nudos del átomo del siglo XIX apenas sobrevivió dos décadas, porque los nuevos descubrimientos demostraron que determinados elementos de la teoría eran erróneos. Así es como avanza la ciencia. Newton compartió la fama (¡o no!, véase el capítulo 4) de su colosal visión con los gigantes sobre cuyos hombros se alzó. También podría haberse disculpado con los gigantes cuya obra convirtió en obsoleta.
Pero la matemática no funciona así. Aunque el formalismo necesario para demostrar determinados resultados haya cambiado, los
resultados
matemáticos en sí no cambian. De hecho, como dice el matemático y escritor Ian Stewart, «en matemáticas hay una palabra para referirse a los resultados antiguos que han cambiado: se llaman simplemente
errores
».
[18]
Y los errores no se reconocen como tales a causa de nuevos descubrimientos, como sucede en las demás ciencias, sino por un examen más riguroso de las mismas viejas verdades matemáticas. ¿Convierte esto a la matemática en la lengua propia de Dios?
Si opina que no es tan importante averiguar si la matemática es inventada o descubierta, tenga en cuenta lo tendencioso de la diferencia entre «inventado» y «descubierto» en esta pregunta: ¿Dios ha sido inventado o descubierto? O, para más provocación: ¿creó Dios a los hombres a Su imagen y semejanza, o los hombres inventaron a Dios a imagen y semejanza de ellos?
En este libro intentaremos dar respuesta a estas fascinantes preguntas (y algunas otras más). En el proceso, repasaremos algunas de las conclusiones obtenidas a partir de la obra de algunos de los grandes matemáticos, físicos, filósofos, científicos del conocimiento y lingüistas de la actualidad y de tiempos pasados. Buscaré también las opiniones, advertencias y reservas de numerosos pensadores de la actualidad. Vamos a iniciar este sugestivo periplo con la revolucionaria, aunque algo vaga, perspectiva de algunos de los filósofos de la Antigüedad.
El deseo de entender el cosmos ha sido siempre un impulso humano. Los esfuerzos del hombre por llegar al fondo de la pregunta «¿qué significa todo esto?» han superado con creces los dedicados a la mera supervivencia, a la mejora de la situación económica o de la calidad de vida. Eso no significa que todos hayan participado de forma activa en la búsqueda de algún tipo de orden natural o metafísico. Las personas que tienen que luchar por llegar a fin de mes apenas pueden permitirse el lujo de ponerse a reflexionar acerca del sentido de la vida. En la galería de cazadores de patrones subyacentes a la complejidad que se percibe en el universo, varios de ellos destacan sobre los demás.
Para muchos, el nombre del matemático, científico y filósofo francés René Descartes (1596-1650) es sinónimo del nacimiento de la «era moderna» de la filosofía de la ciencia. Descartes fue uno de los principales arquitectos
[19]
del cambio de una descripción del mundo natural en términos de las propiedades percibidas directamente a través de los sentidos a una explicación expresada mediante cantidades matemáticamente definidas. En lugar de sentimientos, olores, colores y sensaciones vagas, Descartes quería que las explicaciones científicas descendiesen hasta el nivel fundamental y utilizasen el lenguaje de la matemática:
No reconozco sustancia alguna en las entidades corpóreas salvo lo que los geómetras llaman
cantidad
y convierten en el objeto de sus demostraciones… Y, siendo que todos los fenómenos naturales pueden explicarse de este modo, sostengo que ningún otro principio es admisible o siquiera deseable en física.
[20]
Es interesante ver cómo Descartes excluía de su elevada visión científica los reinos del «pensamiento y la mente», que consideraba independientes del mundo de la materia, susceptible de ser explicado mediante la matemática. Aunque no cabe duda alguna de que Descartes fue uno de los pensadores más influyentes de los últimos siglos (y volveré a referirme a él en el capítulo 4), no fue el primero en elevar la matemática a una posición central. Aunque parezca increíble, ideas radicales de un cosmos impregnado y gobernado por la matemática —ideas que, en cierto modo, iban más allá del propio Descartes— vieron la luz por vez primera, aunque teñidas de un cierto tono místico, hacía más de dos milenios. La persona a la que, según la leyenda, se le atribuye la percepción de que el alma humana es «como la música» si se la mira desde el punto de vista de la matemática pura, es el enigmático Pitágoras.
Pitágoras (ca. 572-497 a.C.) fue quizá la primera persona que fue a la vez un influyente filósofo natural y un carismático filósofo espiritual, es decir, un científico y un pensador religioso. De hecho, se le atribuye la introducción de las palabras
[21]
filosofía,
que significa amor o avidez por el saber, y
matemáticas,
aquellas disciplinas que se pueden aprender. Aunque no ha sobrevivido ninguno de los escritos del propio Pitágoras (si es que existieron, ya que en la época la mayor parte de las comunicaciones eran orales), sí poseemos tres detalladas, aunque sólo parcialmente fiables, biografías de Pitágoras que datan del siglo III.
[22]
Una cuarta biografía anónima se conservó en los escritos del patriarca y filósofo bizantino Fotio (ca. 820-891 d.C). El principal problema al intentar evaluar la contribución personal de Pitágoras es que sus seguidores y discípulos (los pitagóricos) atribuían invariablemente sus propias ideas a él. Así, incluso Aristóteles (384-322 a.C.) tiene problemas para identificar
[23]
qué partes de la filosofía pitagórica se pueden arrogar al propio Pitágoras, de modo que suele hablar de «los pitagóricos» o a «los así llamados pitagóricos». Sin embargo, a juzgar por la fama de Pitágoras en la tradición posterior, generalmente se supone que fue el inspirador de, como mínimo, algunas de las teorías pitagóricas con las que tan en deuda se sintieron Platón o incluso Copérnico.
No parece haber dudas de que Pitágoras nació a principios del siglo VI a.C. en el isla de Samos, junto a la costa de la actual Turquía. Es posible que en su juventud viajase mucho, en especial a Egipto y puede que a Babilonia, en donde habría recibido una parte de su educación matemática. Finalmente emigró a la colonia griega de Crotona, cerca del extremo sur de Italia, en donde rápidamente se rodeó de un entusiasta grupo de jóvenes estudiantes y seguidores.