The Anatomy of Violence (69 page)

Read The Anatomy of Violence Online

Authors: Adrian Raine

BOOK: The Anatomy of Violence
2.05Mb size Format: txt, pdf, ePub

  72.
Yang, Y., Raine, A., Karr, K. L., Colletti, P. & Toga, A. (2009). Localization of deformations within the amygdala in individuals with psychopathy.
Archives of General Psychiatry
66, 986–94.

  73.
Knapska, E., Radwanska, K., Werka, T. & Kaczmarek, L. (2007). Functional internal complexity of amygdala: Focus on gene activity mapping after behavioral training and drugs of abuse.
Physiological Reviews
87, 1113–73.

  74.
Ibid.

  75.
Raine, A., Ishikawa, S. S., Arce, E., Lencz, T., Knuth, K. H., et al. (2004). Hippocampal structural asymmetry in unsuccessful psychopaths.
Biological Psychiatry
55, 185–91. It should be noted that this structural abnormality was specific to unsuccessful or caught psychopaths—it was not observed for successful psychopaths, who seem to lack the classical brain abnormalities found in their unsuccessful counterparts.

  76.
Raine, A., Buchsbaum, M. & LaCasse, L. (1997). Brain abnormalities in murderers indicated by positron emission tomography.
Biological Psychiatry
42, 495–508.

  77.
Verstynen, T., Tierney, R., Urbanski, T. & Tang, A. (2001). Neonatal novelty exposure modulates hippocampal volumetric asymmetry in the rat.
NeuroReport: For Rapid Communication of Neuroscience Research
12, 3019–22.

  78.
Riikonen, R., Salonen, I., Partanen, K. & Verho, S. (1999). Brain perfusion SPECT and MRI in foetal alcohol syndrome.
Developmental Medicine & Child Neurology
41, 652–59.

  79.
Laakso, M. P., Vaurio, O., Koivisto, E., Savolainen, L., Eronen, M., et al. (2001). Psychopathy and the posterior hippocampus.
Behavioural Brain Research
118, 187–93.

  80.
Boccardi, M., Ganzola, R., Rossi, R., Sabattoli, F., Laakso, M. P., et al. (2010). Abnormal hippocampal shape in offenders with psychopathy.
Human
Brain Mapping
31, 438–47.

  81.
Yang, Y. L., Raine, A., Han, C. B., Schug, R. A., Toga, A. W. & Narr, K. L. (2010). Reduced hippocampal and parahippocampal volumes in murderers
with schizophrenia.
Psychiatry Research: Neuroimaging
182, 9–13. It should be noted that these volume reductions in Chinese murderers were specific to those who also presented with schizophrenia.

  82.
LeDoux, J. (1996).
The Emotional Brain
. New York: Simon and Schuster.

  83.
Swanson, L. W. (1999). Limbic system. In G. Adelman & B. H. Smith (eds.),
Encyclopedia of Neuroscience
, pp. 1053–55. Amsterdam: Elsevier.

  84.
Lukas, T. R. & Siegel, A. (2001). Brain structures and neurotransmitters regulating aggression in cats: Implications for human aggression.
Progress in Neuro-Psychopharmacology & Biological Psychiatry
25, 91–140.

  85.
Becker, A., Grecksch, G., Bernstein, H. G., Hollt, V. & Bogerts, B. (1999). Social behaviour in rats lesioned with ibotenic acid in the hippocampus: Quantitative and qualitative analysis.
Psychopharmacology
144, 333–38.

  86.
Gorenstein, E. E. & Newman, J. P. (1980). Disinhibitory psychopathy—A new perspective and a model for research.
Psychological Review
87, 301–15.

  87.
The dichotic listening task is a neuropsychological measure that presents consonant-vowel stimuli (“da,” “ba”) simultaneously to both left and right ears. Subjects who are more left-hemisphere dominant for language report more words from the right ear. Those less lateralized for language, who have language more equally represented in both hemispheres, show a reduction in this right-ear advantage.

  88.
Hare, R. D. & McPherson, L. M. (1984). Psychopathy and perceptual asymmetry during verbal dichotic listening.
Journal of Abnormal Psychology
93, 141–49.

  89.
Raine, A., O’Brien, M., Smiley, N., Scerbo, A. & Chen, C. J. (1990). Reduced lateralization in verbal dichotic listening in adolescent psychopaths.
Journal of Abnormal Psychology
99, 272–77.

  90.
Scerbo, A., Raine, A., O’Brien, M., Chan, C. J., Rhee, C. & Smiley, N. (1990). Reward dominance and passive avoidance learning in adolescent psychopaths.
Journal of Abnormal Child Psychology
18, 451–63.

  91.
Quay, H. C. (1988). The behavioral reward and inhibition system in childhood behavior disorders. In L. M. Bloomingdale (ed.),
Attention Deficit Disorder
, vol. 3, pp. 176–86. Oxford: Pergamon Press.

  92.
Scerbo et al. Reward dominance and passive avoidance learning in adolescent psychopaths.

  93.
Glenn, A. L., Raine, A., Yaralian, P. S. & Yang, Y. (2010). Increased volume of the striatum in psychopathic individuals.
Biological Psychiatry
67, 52–58.

  94.
Cohen, M. X., Schoene-Bake, J. C., Elger, C. E. & Weber, B. (2009). Connectivity-based segregation of the human striatum predicts personality characteristics.
Nature Neuroscience
12, 32–34.

  95.
O’Doherty, J. (2004). Reward representations and reward-related learning in the human brain: Insights from neuroimaging.
Current Opinions in Neurobiology
14, 769–76.

  96.
Barkataki, I., Kumari, V., Das, M., Taylor, P. & Sharma, T. (2006): Volumetric structural brain abnormalities in men with schizophrenia or antisocial personality disorder.
Behavioral Brain Research
15, 239–47.

  97.
Tiihonen, J., Kuikka, J., Bergstrom, K., Hakola, P., Karhu, J., et al. (1995). Altered striatal dopamine re-uptake site densities in habitually violent and non-violent alcoholics.
Nature Medicine
1, 654–57.

  98.
Amen, D. G., Stubblefield, M., Carmichael, B. & Thisted, R. (1996). Brain SPECT findings and aggressiveness.
Annals of Clinical Psychiatry
8, 129–37.

  99.
Buckholtz, J. W., Treadway, M. T., Cowan, R. L., et al. (2010). Mesolimbic dopamine reward system hypersensitivity in individuals with psychopathic traits.
Nature Neuroscience.

100.
Williamson, S., Hare, R. D. & Wong, S. (1987). Violence: Criminal psychopaths and their victims.
Canadian Journal of Behavioral Sciences
19, 454–62.

101.
Glenn, A. L., Iyer, R., Graham, J., Koleva, S. & Haidt, J. (2010). Are all types of morality compromised in psychopathy?
Journal of Personality Disorders
23, 384–98.

102.
Decety, J., Michalska, K. J., Akitsuki, Y. & Lahey, B. B. (2009): Atypical empathic responses in adolescents with aggressive conduct disorder: A functional MRI investigation.
Biological Psychology
80, 203–11.

103.
Ekman, P. & O’Sullivan, M. (1991). Who can catch a liar?
American Psychologist
46, 913–20.

104.
Porter, S., Woodworth, M. & Birt, A. R. (2000). Truth, lies, and videotape: An investigation of the ability of federal parole officers to detect deception.
Law and Human Behavior
24, 643–58.

105.
DePaulo, B. M., Stone, J. L. & Lassiter, G. D. (1985). Deceiving and Detecting Deceit. In B. R. Schenkler (ed.),
The Self and Social Life
, pp. 323–70. New York: McGraw-Hill.

106.
Leach, A. M., Talwar, V., Lee, K., Bala, N. & Lindsay, R.C.L. (2004). “Intuitive” lie detection of children’s deception by law enforcement officials and university students.
Law and Human Behavior
28, 661–85.

107.
Ibid.

108.
Yang, Y. L ., Raine, A., Lencz, T., Bihrle, S., Lacasse, L., et al. (2005). Prefrontal structural abnormalities in liars.
British Journal of Psychiatry
187, 320–25.

109.
Yang, Y., Raine, A., Narr, K., Lencz, T., Lacasse, L., Colletti, P. & Toga, A. W. (2007). Localization of increased prefrontal white matter in pathological liars.
British Journal of Psychiatry
190, 174–75.

110.
Spence, S. A. (2005). Prefrontal white matter—the tissue of lies? Invited commentary on … Prefrontal white matter in pathological liars.
British Journal of Psychiatry
187, 326–27.

111.
Lee, T.M.C., Liu, H. L., Tan, L. H., Chan, C.C.H., Mahankali, S., Feng, C.-M., Hou, J., Fox, P. T. & Gao, J. H. (2002). Lie detection by functional magnetic resonance imaging.
Human Brain Mapping
15, 157–64.

112.
Paus, T., Collins, D. L., Evans, A. C., Leonard, G., Pike, B. & Zijdenbos, A. (2001). Maturation of white matter in the human brain: A review of magnetic resonance studies.
Brain Research Bulletin
54, 255–66.

113.
McCann, J. T. (1998).
Malingering and Deception in Adolescents: Assessing Credibility in Clinical and Forensic Settings
, 1st ed. Washington, D.C.: American Psychological Press.

114.
Yang, Y., Raine, A., Narr, K., Lencz, T., Lacasse, L., et al. (2007). Localization of increased prefrontal white matter in pathological liars.
British Journal of Psychiatry
190, 174–75.

115.
Bengtsson, S. I., Nagy, Z., Skare, S., et al. (2005). Extensive piano practice has regionally-specific effects on white matter development.
Nature Neuroscience
8, 1148–50.

116.
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., et al. (2000). Navigation-related structural change in the hippocampi of taxi drivers.
Proceedings of the National Academy of Sciences U.S.A.
97, 4398–4403.

117.
Maguire, E. A., Woollett, K. & Spiers, H. J. (2006). London taxi drivers and bus drivers: A structural MRI and neuropsychological analysis.
Hippocampus
16
.

118.
Lombroso, C. (1968).
Crime: Its Causes and Remedies
. Translated by H. Horton. Montclair, N.J.: Patterson Smith (originally published 1911).

119.
Langton, L. & Leeper-Piquero, N. L. (2007). Can general strain theory explain white-collar crime? A preliminary investigation of the relationship between strain and select white-collar offenses.
Journal of Criminal Justice
35, 1–15.

120.
Paternoster, R. & Simpson, S. (1993). A rational choice theory of corporate crime. In R.V.G. Clarke and M. Felson (eds.),
Routine Activities and Rational Choice Theory
, pp. 37–51. New Brunswick, N.J.: Transaction.

121.
Sutherland, E. H. (1949).
White Collar Crime
. New York: Rinehart and Winston.

122.
Wheeler, S., Weisburd, D. & Bode, N. (1982). Sentencing the white collar offender: Rhetoric and reality,
American Sociological Review
47, 641–59.

123.
Weisburd, D., Waring, E. & Chayet, E. J. (2001).
White Collar Crime and Criminal Careers
. New York: Cambridge University Press.

124.
Raine, A., Laufer, W. S., Yang, Y., Narr, K. L. & Toga, A. W. (2012). Increased executive functioning, attention, and cortical thickness in white-collar criminals.
Human Brain Mapping
, 33, 2932–40.

125.
Kongs, S. K., Thompson, L. L., Iverson, G. L., et al. (2000).
Wisconsin Card Sorting Test: 64 Card Version; Professional Manual
. Odessa, Fla.: Psychological Assessment Resources.

126.
Williams, L. M., Brammer, M. J., Skerrett, D., Lagopolous, J., Rennie, C., et al. (2000). The neural correlates of orienting: An integration of fMRI and skin conductance orienting.
NeuroReport
11, 3011–15.

127.
Raine & Yang, Neural foundations to moral reasoning and antisocial behavior.

128.
Tsujii, T., Okada, M. & Watanabe, S. (2010). Effects of aging on hemispheric asymmetry in inferior frontal cortex activity during belief-bias syllogistic reasoning: A near-infrared spectroscopy study.
Behavioral Brain Research
210, 178–83; Hampshire, A., Chamberlain, S. R., Monti, M. M., Duncan, J. & Owen, A. M. (2010). The role of the right inferior frontal gyrus: Inhibition and attentional control.
NeuroImage
50, 1313–19; Brass, M., Derrfuss, J., Forstmann, B. & von Cramon, D. Y. (2005). The role of the inferior frontal junction area in cognitive control.
Trends in Cognitive Sciences
9, 314–16.

129.
Shamay-Tsoory, S. G., Tomer, R., Berger, B. D., Goldsher, D. & Aharon-Peretz, J. (2005). Impaired “affective theory of mind” is associated with right ventromedial prefrontal damage.
Cognitive and Behavioral Neurology
18, 55–67.; Goghari, V. M. & MacDonald, A. W. (2009). The neural basis of cognitive control: Response selection and inhibition.
Brain and Cognition
71, 72–83.; Chikazoe, J. (2010). Localizing performance of go/no-go tasks to prefrontal cortical subregions.
Current Opinion in Psychiatry
23, 267–72.

130.
Bechara et al. Deciding advantageously; Bechara, A., Damasio, H. & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex.
Cerebral Cortex
10, 295–307.

131.
Kringelbach, M. L. & Rolls, E. T. (2004). The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology.
Progress in Neurobiology
72, 341–72.

132.
Ibid.

133.
Kringelbach, M. L. (2005). The human orbitofrontal cortex: Linking reward to hedonic experience.
Nature Reviews Neuroscience
6, 691–702.

134.
Buch, E. R., Mars, R. B., Boorman, E. D. & Rushworth, M.F.S. (2010). A network centered on ventral premotor cortex exerts both facilitatory and inhibitory control over primary motor cortex during action reprogramming.
Journal of Neuroscience
30, 1395–1401; Pardo-Vazquez, J. L., Leboran, V. & Acuna, C. (2009). A role for the ventral premotor cortex beyond performance monitoring.
Proceedings of the National Academy of Sciences, U.S.A.
106, 18,815–19.

135.
Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C. & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system.
PLOS Biology
3, 529–35.

Other books

Complete Short Stories by Robert Graves
Bulletproof by Melissa Pearl
Under Wraps by Joanne Rock
Magnus by Sylvie Germain
The Iron Duke by Meljean Brook
Here Comes the Sun by Nicole Dennis-Benn
The Ravine by Robert Pascuzzi